Show that any positive odd integer is of the form $6q+1,6q+3$$,$ or $6q+5$ where q is some integer.
Answer
Verified
510.9k+ views
Hint: Use the Euclid’s Division Lemma here which states that if we have two positive integers a and b , then there exist unique integers q and r which satisfy the condition $a=bq+r$ where $0\le r
Complete step-by-step answer:
We will use Euclid’s Division Lemma here which states that if we have two positive integers a and b, then there exist unique integers q and r which satisfy the condition $a=bq+r$ where $0\le r
Now for our question, let a be any odd integer and let $b=6$ . Then according to the Euclid’s Division Lemma, we have the following:
$a=6q+r$ , where since r is the remainder, so $0\le r<6$ .
r can either be 1, 2, 3, 4 or 5.
Now, in the equation, $a=6q+r$ we have \[6q=\] even integer as 6 is an even integer.
If \[r=1\] , our equation becomes $a=6q+1$ .
This is an odd integer as $6q$ is an even number and 1 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+1$ is an odd integer …(1)
If $r=2$ , our equation becomes $a=6q+2$ $$
This is an even integer as $6q$ is an even number and 2 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+2$ is an even integer
If $r=3$ , our equation becomes $a=6q+3$
This is an odd integer as $6q$ is an even number and 3 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+3$ is an odd integer …(2)
If $r=4$ , our equation becomes $a=6q+4$ $$
This is an even integer as $6q$ is an even number and 4 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+4$ is an even integer
If $r=5$, our equation becomes $a=6q+5$
This is an odd integer as $6q$ is an even number and 5 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+5$ is an odd integer …(3)
Therefore, from (1), (2), and (3) any positive odd integer is of the form $6q+1,6q+3$ or $6q+5$ ,where q is some integer.
Note: In this question the facts that the sum of an even number and an odd number is always an odd number and that the sum of two even numbers is always an even number is very important.
Also the value of r cannot exceed b as r is the remainder when a is divided by b and the remainder cannot exceed the divisor which is b in this case.
Complete step-by-step answer:
We will use Euclid’s Division Lemma here which states that if we have two positive integers a and b, then there exist unique integers q and r which satisfy the condition $a=bq+r$ where $0\le r
Now for our question, let a be any odd integer and let $b=6$ . Then according to the Euclid’s Division Lemma, we have the following:
$a=6q+r$ , where since r is the remainder, so $0\le r<6$ .
r can either be 1, 2, 3, 4 or 5.
Now, in the equation, $a=6q+r$ we have \[6q=\] even integer as 6 is an even integer.
If \[r=1\] , our equation becomes $a=6q+1$ .
This is an odd integer as $6q$ is an even number and 1 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+1$ is an odd integer …(1)
If $r=2$ , our equation becomes $a=6q+2$ $$
This is an even integer as $6q$ is an even number and 2 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+2$ is an even integer
If $r=3$ , our equation becomes $a=6q+3$
This is an odd integer as $6q$ is an even number and 3 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+3$ is an odd integer …(2)
If $r=4$ , our equation becomes $a=6q+4$ $$
This is an even integer as $6q$ is an even number and 4 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+4$ is an even integer
If $r=5$, our equation becomes $a=6q+5$
This is an odd integer as $6q$ is an even number and 5 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+5$ is an odd integer …(3)
Therefore, from (1), (2), and (3) any positive odd integer is of the form $6q+1,6q+3$ or $6q+5$ ,where q is some integer.
Note: In this question the facts that the sum of an even number and an odd number is always an odd number and that the sum of two even numbers is always an even number is very important.
Also the value of r cannot exceed b as r is the remainder when a is divided by b and the remainder cannot exceed the divisor which is b in this case.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
The Island of Bombay was given to the English Prince class 7 social science CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE