Answer
Verified
396.9k+ views
Hint: Wave: It is a disturbance traveling through a medium, transporting the energy from one location to another location. Waves transport the energy without transporting the matter. Change in the direction of a wave is known as reflection. Waves are shown spectrum like radio waves, gamma waves, visible light etc.
Complete step-by-step solution:
Given,
Equation,
$y = a\sin (\omega t - kx)$ …(1)
$\dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$ …(2)
Differentiate the equation 1 w.r.t. time’t’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial t}} = a\omega \cos (\omega t - kx)$
Again differentiate w.r.t. ‘t’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = - a{\omega ^2}\sin (\omega t - kx)$ …(3)
Now differentiate the equation 1 w.r.t. ‘x’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial x}} = - ax\cos (\omega t - kx)$
Differentiate again w.r.t. ‘x’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {x^2}}} = - a{x^2}\sin (\omega t - kx)$ …(4)
Put the value in equation 2 from equation 3 and 4
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$
$ \Rightarrow - a{\omega ^2}\sin (\omega t - kx) = {v^2}( - a{x^2}\sin (\omega t - kx))$
$ \Rightarrow {\omega ^2} = {v^2}{x^2}$
\[ \Rightarrow {v^2} = {\left( {\dfrac{\omega }{x}} \right)^2}\]
\[ \Rightarrow v = \left( {\dfrac{\omega }{x}} \right)\]
The Waves travel in a positive direction.
Note: Speed of waves depends on the medium in which the wave travels. In denser medium waves travel slow as compared to lesser denser mediums. The velocity of the wave is equal to the product of wavelength and frequency (number of vibrations per second). And it is independent of intensity.
Complete step-by-step solution:
Given,
Equation,
$y = a\sin (\omega t - kx)$ …(1)
$\dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$ …(2)
Differentiate the equation 1 w.r.t. time’t’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial t}} = a\omega \cos (\omega t - kx)$
Again differentiate w.r.t. ‘t’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = - a{\omega ^2}\sin (\omega t - kx)$ …(3)
Now differentiate the equation 1 w.r.t. ‘x’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial x}} = - ax\cos (\omega t - kx)$
Differentiate again w.r.t. ‘x’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {x^2}}} = - a{x^2}\sin (\omega t - kx)$ …(4)
Put the value in equation 2 from equation 3 and 4
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$
$ \Rightarrow - a{\omega ^2}\sin (\omega t - kx) = {v^2}( - a{x^2}\sin (\omega t - kx))$
$ \Rightarrow {\omega ^2} = {v^2}{x^2}$
\[ \Rightarrow {v^2} = {\left( {\dfrac{\omega }{x}} \right)^2}\]
\[ \Rightarrow v = \left( {\dfrac{\omega }{x}} \right)\]
The Waves travel in a positive direction.
Note: Speed of waves depends on the medium in which the wave travels. In denser medium waves travel slow as compared to lesser denser mediums. The velocity of the wave is equal to the product of wavelength and frequency (number of vibrations per second). And it is independent of intensity.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE