
Show that the product of ${a^3} + {b^3} + {c^3} - 3abc$ and ${x^3} + {y^3} + {z^3} - 3xyz$ can be put into the form ${A^3} + {B^3} + {C^3} - 3ABC$.
Answer
594.6k+ views
Hint: Do the product of ${a^3} + {b^3} + {c^3} - 3abc$and ${x^3} + {y^3} + {z^3} - 3xyz$, and assume that product as P and then solve the question.
Complete step by step answer:
We have been given two equations, ${a^3} + {b^3} + {c^3} - 3abc - (1)$ and ${x^3} + {y^3} + {z^3} - 3xyz - (2)$
Multiplying equation (1) and equation (2), we get-
$P = ({a^3} + {b^3} + {c^3} - 3abc) \times ({x^3} + {y^3} + {z^3} - 3xyz)$
Multiplying all the terms with each other we get-
$
P = ({a^3} + {b^3} + {c^3} - 3abc) \times ({x^3} + {y^3} + {z^3} - 3xyz) \\
= {a^3}{x^3} + {a^3}{y^3} + {a^3}{z^3} + {b^3}{x^3} + {b^3}{y^3} + {b^3}{z^3} + {c^3}{x^3} + {c^3}{y^3} + {c^3}{z^3} + 9abcxyz - 3{a^3}xyz - 3{b^3}xyz - 3{c^3}xyz - 3abc{x^3} - 3abc{y^3} - 3abc{z^3} \\
$
Now, we can also write the above equation using the formula, ${a^3} + {b^3} + {c^3} - 3abc = {(a + b + c)^3}$, we get-
\[
P = \left[ {{{\left( {ax} \right)}^3} + {{\left( {bx} \right)}^3} + {{\left( {cx} \right)}^3} - 3abc{x^3}} \right] + \left[ {{{\left( {ay} \right)}^3} + {{\left( {by} \right)}^3} + {{\left( {cy} \right)}^3} - 3abc{y^3}} \right] + \left[ {{{\left( {az} \right)}^3} + {{\left( {bz} \right)}^3} + {{\left( {cz} \right)}^3} - 3abc{z^3}} \right] - 3xyz\left[ {{a^3} + {b^3} + {c^3} - 3abc} \right] \\
= {\left( {\left( {a + b + c} \right)x} \right)^3} + {\left( {\left( {a + b + c} \right)y} \right)^3} + {\left( {\left( {a + b + c} \right)z} \right)^3} - 3{(a + b + c)^3}xyz \\
\]Now we can write,
$
A = \left( {\left( {a + b + c} \right)x} \right) \\
B = \left( {\left( {a + b + c} \right)y} \right) \\
C = \left( {\left( {a + b + c} \right)z} \right) \\
$
Therefore, the equation becomes,
\[ \Rightarrow P = {A^3} + {B^3} + {C^3} - 3ABC\]
Hence the product of the given equations can be put in the form of,
${A^3} + {B^3} + {C^3} - 3ABC$.
Note: Whenever such types of questions appear, always be careful while multiplying the given equations as the multiplication is very lengthy and it will result in a long equation containing different order terms. Also, always assume the product to be some variable, as done in the solution, the product is assumed to be P.
Complete step by step answer:
We have been given two equations, ${a^3} + {b^3} + {c^3} - 3abc - (1)$ and ${x^3} + {y^3} + {z^3} - 3xyz - (2)$
Multiplying equation (1) and equation (2), we get-
$P = ({a^3} + {b^3} + {c^3} - 3abc) \times ({x^3} + {y^3} + {z^3} - 3xyz)$
Multiplying all the terms with each other we get-
$
P = ({a^3} + {b^3} + {c^3} - 3abc) \times ({x^3} + {y^3} + {z^3} - 3xyz) \\
= {a^3}{x^3} + {a^3}{y^3} + {a^3}{z^3} + {b^3}{x^3} + {b^3}{y^3} + {b^3}{z^3} + {c^3}{x^3} + {c^3}{y^3} + {c^3}{z^3} + 9abcxyz - 3{a^3}xyz - 3{b^3}xyz - 3{c^3}xyz - 3abc{x^3} - 3abc{y^3} - 3abc{z^3} \\
$
Now, we can also write the above equation using the formula, ${a^3} + {b^3} + {c^3} - 3abc = {(a + b + c)^3}$, we get-
\[
P = \left[ {{{\left( {ax} \right)}^3} + {{\left( {bx} \right)}^3} + {{\left( {cx} \right)}^3} - 3abc{x^3}} \right] + \left[ {{{\left( {ay} \right)}^3} + {{\left( {by} \right)}^3} + {{\left( {cy} \right)}^3} - 3abc{y^3}} \right] + \left[ {{{\left( {az} \right)}^3} + {{\left( {bz} \right)}^3} + {{\left( {cz} \right)}^3} - 3abc{z^3}} \right] - 3xyz\left[ {{a^3} + {b^3} + {c^3} - 3abc} \right] \\
= {\left( {\left( {a + b + c} \right)x} \right)^3} + {\left( {\left( {a + b + c} \right)y} \right)^3} + {\left( {\left( {a + b + c} \right)z} \right)^3} - 3{(a + b + c)^3}xyz \\
\]Now we can write,
$
A = \left( {\left( {a + b + c} \right)x} \right) \\
B = \left( {\left( {a + b + c} \right)y} \right) \\
C = \left( {\left( {a + b + c} \right)z} \right) \\
$
Therefore, the equation becomes,
\[ \Rightarrow P = {A^3} + {B^3} + {C^3} - 3ABC\]
Hence the product of the given equations can be put in the form of,
${A^3} + {B^3} + {C^3} - 3ABC$.
Note: Whenever such types of questions appear, always be careful while multiplying the given equations as the multiplication is very lengthy and it will result in a long equation containing different order terms. Also, always assume the product to be some variable, as done in the solution, the product is assumed to be P.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

