Show that x=2 is the only root of the equation
${9^{{{\log }_3}[{{\log }_2}x]}} = {\log _2}x - {({\log _2}x)^2} + 1$
Answer
Verified
510k+ views
Hint: Here let’s ${\text{use the properties }}{{\text{a}}^{{{\log }_a}^n}} = n$, ${\text{lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},$ ${{\text{a}}^b}^{{{\log }_a}^n} = {a^{{{\log }_a}{n^b}}}$ and arrange the terms to find the value of x.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE