Answer
Verified
496.2k+ views
Hint: Here let’s ${\text{use the properties }}{{\text{a}}^{{{\log }_a}^n}} = n$, ${\text{lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},$ ${{\text{a}}^b}^{{{\log }_a}^n} = {a^{{{\log }_a}{n^b}}}$ and arrange the terms to find the value of x.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE