
Show that xyz=2. If \[x={{\log }_{7}}9\], $y={{\log }_{5}}7$, $z={{\log }_{3}}5$.
Answer
613.5k+ views
Hint: For solving this question first we will write $x$, $y$ and $z$ into fraction form with the help of some logarithmic identities. Then we will multiply them easily to prove the result.
Complete step-by-step answer:
Given:
It is given that if \[x={{\log }_{7}}9\] , $y={{\log }_{5}}7$, $z={{\log }_{3}}5$ and we have to prove that $xyz=2$.
Now, before we proceed we should be familiar with the following logarithmic formulas:
1. If $a$ and $b$ are two positive numbers then, ${{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}$.
2. If $a$ is any positive number then, $\log {{a}^{n}}=n\log a$.
Now, we will use the above-mentioned formulas to write $x$, $y$ and $z$ into some other form that will help us to find the value of $xyz$ easily.
Now, as it is given that \[x={{\log }_{7}}9\] , using the formula mentioned in the first and second point. Then,
\[\begin{align}
& x={{\log }_{7}}9 \\
& \Rightarrow x=\dfrac{\log 9}{\log 7}=\dfrac{\log {{3}^{2}}}{\log 7} \\
& \Rightarrow x=\dfrac{2\log 3}{\log 7}..................\left( 1 \right) \\
\end{align}\]
Now, as it is given that $y={{\log }_{5}}7$ , using the formula mentioned in the first point. Then,
$\begin{align}
& y={{\log }_{5}}7 \\
& \Rightarrow y=\dfrac{\log 7}{\log 5}..............\left( 2 \right) \\
\end{align}$
Now, as it is given that $z={{\log }_{3}}5$ , using the formula mentioned in the first point. Then,
$\begin{align}
& z={{\log }_{3}}5 \\
& \Rightarrow z=\dfrac{\log 5}{\log 3}................\left( 3 \right) \\
\end{align}$
Now, from equation (1) we have \[x=\dfrac{2\log 3}{\log 7}\] , from equation (2) we have $y=\dfrac{\log 7}{\log 5}$ and from equation (3) we have $z=\dfrac{\log 5}{\log 3}$ . Then,
$\begin{align}
& xyz=\dfrac{2\log 3}{\log 7}\times \dfrac{\log 7}{\log 5}\times \dfrac{\log 5}{\log 3} \\
& \Rightarrow xyz=2 \\
\end{align}$
Thus, the value of $xyz=2$.
Hence, proved.
Note: Here, the student should avoid multiplying the given terms directly without using logarithmic identities. Firstly, the value of given terms should be written in such a manner so that when we multiply them there won’t be any difficulty. Moreover, students should avoid calculation mistakes while solving the problem to get the correct answer quickly.
Complete step-by-step answer:
Given:
It is given that if \[x={{\log }_{7}}9\] , $y={{\log }_{5}}7$, $z={{\log }_{3}}5$ and we have to prove that $xyz=2$.
Now, before we proceed we should be familiar with the following logarithmic formulas:
1. If $a$ and $b$ are two positive numbers then, ${{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}$.
2. If $a$ is any positive number then, $\log {{a}^{n}}=n\log a$.
Now, we will use the above-mentioned formulas to write $x$, $y$ and $z$ into some other form that will help us to find the value of $xyz$ easily.
Now, as it is given that \[x={{\log }_{7}}9\] , using the formula mentioned in the first and second point. Then,
\[\begin{align}
& x={{\log }_{7}}9 \\
& \Rightarrow x=\dfrac{\log 9}{\log 7}=\dfrac{\log {{3}^{2}}}{\log 7} \\
& \Rightarrow x=\dfrac{2\log 3}{\log 7}..................\left( 1 \right) \\
\end{align}\]
Now, as it is given that $y={{\log }_{5}}7$ , using the formula mentioned in the first point. Then,
$\begin{align}
& y={{\log }_{5}}7 \\
& \Rightarrow y=\dfrac{\log 7}{\log 5}..............\left( 2 \right) \\
\end{align}$
Now, as it is given that $z={{\log }_{3}}5$ , using the formula mentioned in the first point. Then,
$\begin{align}
& z={{\log }_{3}}5 \\
& \Rightarrow z=\dfrac{\log 5}{\log 3}................\left( 3 \right) \\
\end{align}$
Now, from equation (1) we have \[x=\dfrac{2\log 3}{\log 7}\] , from equation (2) we have $y=\dfrac{\log 7}{\log 5}$ and from equation (3) we have $z=\dfrac{\log 5}{\log 3}$ . Then,
$\begin{align}
& xyz=\dfrac{2\log 3}{\log 7}\times \dfrac{\log 7}{\log 5}\times \dfrac{\log 5}{\log 3} \\
& \Rightarrow xyz=2 \\
\end{align}$
Thus, the value of $xyz=2$.
Hence, proved.
Note: Here, the student should avoid multiplying the given terms directly without using logarithmic identities. Firstly, the value of given terms should be written in such a manner so that when we multiply them there won’t be any difficulty. Moreover, students should avoid calculation mistakes while solving the problem to get the correct answer quickly.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

