
Simplify:
Answer
435.6k+ views
Hint: To simplify the given expression, we are going to use the following algebraic identity: . In this identity, we are going to substitute and then solve the required addition and subtraction.
Complete step by step answer:
The expression given in the above problem which we have to simplify is as follows:
If you carefully look at the above expression then you will find that the above expression is written in the form of the following algebraic identity which is the cube of two variables with a subtraction sign between them:
Now, substituting in the above equation we get,
Now, we are going to simplify the R.H.S of the above equation by opening all the brackets and when opening the brackets we are going to need the following algebraic identities to use:
Also, we are going to use the following algebraic identity:
Assimilating all the above algebraic identities and using them in the above equation we get,
We are taking R.H.S of the above equation and then solve that we get,
As you can see that in the above expression, some positive and negative terms got cancelled out and we are left with:
Multiplying by we get,
Hence, we have simplified the given expression to .
Note: The alternate approach to the above problem is to expand separately in and then subtract the expansion of the two cubic identities. To expand the cubic expressions we are going to use the following algebraic identity:
Then substitute the values of in the above equations we get,
Subtracting the above two equation (2) from eq. (1) we get,
Hence, we are getting the same result of simplification as we have shown in the above solution.
Complete step by step answer:
The expression given in the above problem which we have to simplify is as follows:
If you carefully look at the above expression then you will find that the above expression is written in the form of the following algebraic identity which is the cube of two variables with a subtraction sign between them:
Now, substituting
Now, we are going to simplify the R.H.S of the above equation by opening all the brackets and when opening the brackets we are going to need the following algebraic identities to use:
Also, we are going to use the following algebraic identity:
Assimilating all the above algebraic identities and using them in the above equation we get,
We are taking R.H.S of the above equation and then solve that we get,
As you can see that in the above expression, some positive and negative terms got cancelled out and we are left with:
Multiplying
Hence, we have simplified the given expression to
Note: The alternate approach to the above problem is to expand
Then substitute the values of
Subtracting the above two equation (2) from eq. (1) we get,
Hence, we are getting the same result of simplification as we have shown in the above solution.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Differentiate between the Western and the Eastern class 9 social science CBSE
