Answer
Verified
430.5k+ views
Hint:
Here, we have to simplify the given Binomials. We will multiply the binomials by using the horizontal method or FOIL method to find the product of their Binomials. FOIL method is a method of multiplying the binomials by multiplying the first terms, then the outer terms, then the inner terms and at last the last terms. Using this It is possible to combine like terms.
Complete step by step solution:
We are given with an equation \[\left( {2a - 1} \right)\left( {3a + 2} \right)\]
We will find the product of the given binomials by using the horizontal method or the FOIL method of multiplying one term of a binomial with each other term in another binomial.
By multiplying each term in one binomial with each other term in the other binomial, we get
\[ \Rightarrow \left( {2a - 1} \right)\left( {3a + 2} \right) = 2a\left( {3a + 2} \right) - 1\left( {3a + 2} \right)\]
Again multiplying the terms, we get
\[ \Rightarrow \left( {2a - 1} \right)\left( {3a + 2} \right) = 6{a^2} + 4a - 3a - 2\]
By subtracting the like terms, we get
\[ \Rightarrow \left( {2a - 1} \right)\left( {3a + 2} \right) = 6{a^2} + a - 2\]
Therefore, the product of two binomials \[\left( {2a - 1} \right)\left( {3a + 2} \right)\] is \[6{a^2} + a - 2\]
Note:
We know that a binomial expression is defined as an algebraic expression having two terms and these terms must be unlike. We should know that when two linear equation of a monomial expression are multiplied, then their product is always a quadratic equation. We can also find the product by using an algebraic identity.
The given equation \[\left( {2a - 1} \right)\left( {3a + 2} \right)\] can also be written as
\[\left( {2a - 1} \right)\left( {3a + 2} \right) = 2\left( {a - \dfrac{1}{2}} \right) \times 3\left( {a + \dfrac{2}{3}} \right)\]
Multiplying the terms, we get
\[ \Rightarrow \left( {2a - 1} \right) \times \left( {3a + 2} \right) = 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right)\]
The product of Binomials is given by the formula \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
By substituting \[a = - \dfrac{1}{2}\] and \[b = \dfrac{2}{3}\] in the above formula, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = 6\left[ {{a^2} + \left( { - \dfrac{1}{2} + \dfrac{2}{3}} \right)a + \left( { - \dfrac{1}{2}} \right)\left( {\dfrac{2}{3}} \right)} \right]\]
Cross multiplying the equation, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = 6\left[ {{a^2} + \left( { - \dfrac{1}{2} \times \dfrac{3}{3} + \dfrac{2}{3} \times \dfrac{2}{2}} \right)a + \left( { - \dfrac{1}{2}} \right)\left( {\dfrac{2}{3}} \right)} \right]\]
By simplifying the equation, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = 6\left[ {{a^2} + \left( {\dfrac{{ - 3 + 4}}{6}} \right)a + \left( { - \dfrac{1}{3}} \right)} \right]\]
Multiplying the terms, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = \left[ {6{a^2} + 6\left( {\dfrac{1}{6}} \right)a + 6\left( { - \dfrac{1}{3}} \right)} \right]\]
By cancelling the similar terms, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = \left[ {6{a^2} + a - 2} \right]\]
Therefore, the product of two binomials \[\left( {2a - 1} \right)\left( {3a + 2} \right)\] is\[6{a^2} + a - 2\] .
Here, we have to simplify the given Binomials. We will multiply the binomials by using the horizontal method or FOIL method to find the product of their Binomials. FOIL method is a method of multiplying the binomials by multiplying the first terms, then the outer terms, then the inner terms and at last the last terms. Using this It is possible to combine like terms.
Complete step by step solution:
We are given with an equation \[\left( {2a - 1} \right)\left( {3a + 2} \right)\]
We will find the product of the given binomials by using the horizontal method or the FOIL method of multiplying one term of a binomial with each other term in another binomial.
By multiplying each term in one binomial with each other term in the other binomial, we get
\[ \Rightarrow \left( {2a - 1} \right)\left( {3a + 2} \right) = 2a\left( {3a + 2} \right) - 1\left( {3a + 2} \right)\]
Again multiplying the terms, we get
\[ \Rightarrow \left( {2a - 1} \right)\left( {3a + 2} \right) = 6{a^2} + 4a - 3a - 2\]
By subtracting the like terms, we get
\[ \Rightarrow \left( {2a - 1} \right)\left( {3a + 2} \right) = 6{a^2} + a - 2\]
Therefore, the product of two binomials \[\left( {2a - 1} \right)\left( {3a + 2} \right)\] is \[6{a^2} + a - 2\]
Note:
We know that a binomial expression is defined as an algebraic expression having two terms and these terms must be unlike. We should know that when two linear equation of a monomial expression are multiplied, then their product is always a quadratic equation. We can also find the product by using an algebraic identity.
The given equation \[\left( {2a - 1} \right)\left( {3a + 2} \right)\] can also be written as
\[\left( {2a - 1} \right)\left( {3a + 2} \right) = 2\left( {a - \dfrac{1}{2}} \right) \times 3\left( {a + \dfrac{2}{3}} \right)\]
Multiplying the terms, we get
\[ \Rightarrow \left( {2a - 1} \right) \times \left( {3a + 2} \right) = 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right)\]
The product of Binomials is given by the formula \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
By substituting \[a = - \dfrac{1}{2}\] and \[b = \dfrac{2}{3}\] in the above formula, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = 6\left[ {{a^2} + \left( { - \dfrac{1}{2} + \dfrac{2}{3}} \right)a + \left( { - \dfrac{1}{2}} \right)\left( {\dfrac{2}{3}} \right)} \right]\]
Cross multiplying the equation, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = 6\left[ {{a^2} + \left( { - \dfrac{1}{2} \times \dfrac{3}{3} + \dfrac{2}{3} \times \dfrac{2}{2}} \right)a + \left( { - \dfrac{1}{2}} \right)\left( {\dfrac{2}{3}} \right)} \right]\]
By simplifying the equation, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = 6\left[ {{a^2} + \left( {\dfrac{{ - 3 + 4}}{6}} \right)a + \left( { - \dfrac{1}{3}} \right)} \right]\]
Multiplying the terms, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = \left[ {6{a^2} + 6\left( {\dfrac{1}{6}} \right)a + 6\left( { - \dfrac{1}{3}} \right)} \right]\]
By cancelling the similar terms, we get
\[ \Rightarrow 6\left( {a - \dfrac{1}{2}} \right) \times \left( {a + \dfrac{2}{3}} \right) = \left[ {6{a^2} + a - 2} \right]\]
Therefore, the product of two binomials \[\left( {2a - 1} \right)\left( {3a + 2} \right)\] is\[6{a^2} + a - 2\] .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE