Answer
Verified
497.1k+ views
Hint: The given problem is related to simplification of polynomials. Try to express the given terms as sum or difference of two or more terms by multiplying the given terms.
Complete step-by-step answer:
Before proceeding with the solution, first, we will understand the concept of the product of two polynomials. We will consider the two polynomials $(ax+by)$ and $(px+qy+r)$. To find the product of the two polynomials, we have to multiply each term of the second polynomial by each term of the first polynomial. So, the product of the two polynomials $(ax+by)$ and $(px+qy+r)$ is given as $(ax+by)(px+qy+r)=ax\left( px+qy+r \right)+by\left( px+qy+r \right)$.
$=ap{{x}^{2}}+aqxy+arx+bpxy+bq{{y}^{2}}+bry$
$=ap{{x}^{2}}+bq{{y}^{2}}+xy\left( aq+bp \right)+r\left( ax+by \right)$
Now, coming to the question, we are asked to simplify the product $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$.
So, $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$can be written as $2x{{y}^{2}}\left( 3x+y-4xy \right)-{{x}^{2}}{{y}^{2}}\left( 3x+y-4xy \right)$.
Now, we will multiply each term to get the product. On multiplying each term , we get $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-8{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}-{{x}^{2}}{{y}^{3}}+4{{x}^{3}}{{y}^{3}}$.
$=6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$
Hence, the product $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$ is simplified to $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$.
Now, we need to find the value of the product when $x=-2$ and $y=-1$. To find the value of the product, we will substitute $x=-2$ and $y=-1$ in $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$. On substituting $x=-2$ and $y=-1$ in $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$, we get:$6{{\left( -2 \right)}^{2}}{{\left( -1 \right)}^{2}}+2\left( -2 \right){{\left( -1 \right)}^{3}}-9{{\left( -2 \right)}^{2}}{{\left( -1 \right)}^{3}}-3{{\left( -2 \right)}^{3}}{{\left( -1 \right)}^{2}}+4{{\left( -2 \right)}^{3}}{{\left( -1 \right)}^{3}}$.
Now, we know ${{\left( -1 \right)}^{2}}=1$ , ${{\left( -1 \right)}^{3}}=-1$, ${{\left( -2 \right)}^{2}}=4$ and ${{\left( -2 \right)}^{3}}=-8$.
So, the value of the product will be equal to $\left( 6\times 4\times 1 \right)+\left( 2\times \left( -2 \right)\times \left( -1 \right) \right)-\left( 9\times 4\times \left( -1 \right) \right)-\left( 3\times \left( -8 \right)\times 1 \right)+\left( 4\times \left( -8 \right)\times \left( -1 \right) \right)$.
$=24+4+36+24+32$
$=120$
Hence, the value of $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$ when $x=-2$ and $y=-1$ is $120$.
Note: While substituting the values of $x$ and $y$ in the simplified expression, make sure that sign mistakes do not occur. Sign mistakes are very common and due to such mistakes, students can end up getting a wrong answer. So, such mistakes should be avoided in every possible case.
Complete step-by-step answer:
Before proceeding with the solution, first, we will understand the concept of the product of two polynomials. We will consider the two polynomials $(ax+by)$ and $(px+qy+r)$. To find the product of the two polynomials, we have to multiply each term of the second polynomial by each term of the first polynomial. So, the product of the two polynomials $(ax+by)$ and $(px+qy+r)$ is given as $(ax+by)(px+qy+r)=ax\left( px+qy+r \right)+by\left( px+qy+r \right)$.
$=ap{{x}^{2}}+aqxy+arx+bpxy+bq{{y}^{2}}+bry$
$=ap{{x}^{2}}+bq{{y}^{2}}+xy\left( aq+bp \right)+r\left( ax+by \right)$
Now, coming to the question, we are asked to simplify the product $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$.
So, $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$can be written as $2x{{y}^{2}}\left( 3x+y-4xy \right)-{{x}^{2}}{{y}^{2}}\left( 3x+y-4xy \right)$.
Now, we will multiply each term to get the product. On multiplying each term , we get $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-8{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}-{{x}^{2}}{{y}^{3}}+4{{x}^{3}}{{y}^{3}}$.
$=6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$
Hence, the product $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$ is simplified to $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$.
Now, we need to find the value of the product when $x=-2$ and $y=-1$. To find the value of the product, we will substitute $x=-2$ and $y=-1$ in $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$. On substituting $x=-2$ and $y=-1$ in $6{{x}^{2}}{{y}^{2}}+2x{{y}^{3}}-9{{x}^{2}}{{y}^{3}}-3{{x}^{3}}{{y}^{2}}+4{{x}^{3}}{{y}^{3}}$, we get:$6{{\left( -2 \right)}^{2}}{{\left( -1 \right)}^{2}}+2\left( -2 \right){{\left( -1 \right)}^{3}}-9{{\left( -2 \right)}^{2}}{{\left( -1 \right)}^{3}}-3{{\left( -2 \right)}^{3}}{{\left( -1 \right)}^{2}}+4{{\left( -2 \right)}^{3}}{{\left( -1 \right)}^{3}}$.
Now, we know ${{\left( -1 \right)}^{2}}=1$ , ${{\left( -1 \right)}^{3}}=-1$, ${{\left( -2 \right)}^{2}}=4$ and ${{\left( -2 \right)}^{3}}=-8$.
So, the value of the product will be equal to $\left( 6\times 4\times 1 \right)+\left( 2\times \left( -2 \right)\times \left( -1 \right) \right)-\left( 9\times 4\times \left( -1 \right) \right)-\left( 3\times \left( -8 \right)\times 1 \right)+\left( 4\times \left( -8 \right)\times \left( -1 \right) \right)$.
$=24+4+36+24+32$
$=120$
Hence, the value of $\left( 2x{{y}^{2}}-{{x}^{2}}{{y}^{2}} \right)\left( 3x+y-4xy \right)$ when $x=-2$ and $y=-1$ is $120$.
Note: While substituting the values of $x$ and $y$ in the simplified expression, make sure that sign mistakes do not occur. Sign mistakes are very common and due to such mistakes, students can end up getting a wrong answer. So, such mistakes should be avoided in every possible case.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE