Answer
Verified
398.1k+ views
Hint: We explain the term absolute value of a number. How the modulus function always remains positive. We expand the function and break it into two parts. We also try to find the domain and the change of the graph at the particular point of $x=5$.
Complete step by step answer:
Modulus function $f\left( x \right)=\left| x \right|$ works as the distance of the number from 0. The number can be both positive and negative but the distance of that number will always be positive. Distance can never be negative.
In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $\left| x \right|$. We can say $\left| x \right|\ge 0$.
We can express the function $f\left( x \right)=\left| x \right|$ as $f\left( x \right)=\left\{ \begin{align}
& x & \left( x\ge 0 \right) \\
& -x & \left( x<0 \right) \\
\end{align} \right.$.
We can write $y=\left| x-5 \right|$ depending on the change of the graph.
So, $y=\left\{ \begin{align}
& x-5 & \left( x\ge 5 \right) \\
& 5-x & \left( x<5 \right) \\
\end{align} \right.$
We can see in the domain of $\left[ 0,1 \right]$ for $\int\limits_{0}^{1}{\left| x-5 \right|dx}$, the equation becomes $y=5-x$.
Therefore, $\int\limits_{0}^{1}{\left| x-5 \right|dx}=\int\limits_{0}^{1}{\left( 5-x \right)dx}$. We use the formula of $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Therefore, \[\int\limits_{0}^{1}{\left| x-5 \right|dx}=\left[ 5x-\dfrac{{{x}^{2}}}{2} \right]_{0}^{1}=5-\dfrac{1}{2}=\dfrac{9}{2}\].
This value indicates the area under the line $y=5-x$ in the region bounded by lines $y=0$, $x=0$ and $x=1$.
Note: The only time the absolute value becomes 0 is when the number itself is 0. For any other number the absolute value is greater than 0. Therefore, we can say $\left| x \right|>0$ when $x\ne 0$. In our given function $y=\left| x-5 \right|$ the absolute value reaches at 5.
Complete step by step answer:
Modulus function $f\left( x \right)=\left| x \right|$ works as the distance of the number from 0. The number can be both positive and negative but the distance of that number will always be positive. Distance can never be negative.
In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $\left| x \right|$. We can say $\left| x \right|\ge 0$.
We can express the function $f\left( x \right)=\left| x \right|$ as $f\left( x \right)=\left\{ \begin{align}
& x & \left( x\ge 0 \right) \\
& -x & \left( x<0 \right) \\
\end{align} \right.$.
We can write $y=\left| x-5 \right|$ depending on the change of the graph.
So, $y=\left\{ \begin{align}
& x-5 & \left( x\ge 5 \right) \\
& 5-x & \left( x<5 \right) \\
\end{align} \right.$
We can see in the domain of $\left[ 0,1 \right]$ for $\int\limits_{0}^{1}{\left| x-5 \right|dx}$, the equation becomes $y=5-x$.
Therefore, $\int\limits_{0}^{1}{\left| x-5 \right|dx}=\int\limits_{0}^{1}{\left( 5-x \right)dx}$. We use the formula of $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Therefore, \[\int\limits_{0}^{1}{\left| x-5 \right|dx}=\left[ 5x-\dfrac{{{x}^{2}}}{2} \right]_{0}^{1}=5-\dfrac{1}{2}=\dfrac{9}{2}\].
This value indicates the area under the line $y=5-x$ in the region bounded by lines $y=0$, $x=0$ and $x=1$.
Note: The only time the absolute value becomes 0 is when the number itself is 0. For any other number the absolute value is greater than 0. Therefore, we can say $\left| x \right|>0$ when $x\ne 0$. In our given function $y=\left| x-5 \right|$ the absolute value reaches at 5.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE