Answer
Verified
499.8k+ views
Hint- We will try to separate both the terms of $x\& y$. In that case it will be easy to integrate separately.
Given equation: $\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Before solving the differential equation, first let us rearrange the given equation by taking some common terms.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = 1 + x + y + xy \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {1 + x} \right) + y\left( {1 + x} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {1 + x} \right)\left( {1 + y} \right) \\
\]
Now, let us separate the like terms together on either side of the equation.
\[ \Rightarrow \dfrac{{dy}}{{\left( {1 + y} \right)}} = \left( {1 + x} \right)dx\]
Now, integrating both the sides
\[ \Rightarrow \int {\dfrac{{dy}}{{\left( {1 + y} \right)}}} = \int {\left( {1 + x} \right)dx} \]
As we know that
\[\left[ {\because \int {\dfrac{{dx}}{x} = \ln x} } \right]\& \left[ {\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right]\]
So using the above formula and by solving the integral, we get
\[ \Rightarrow \ln \left( {y + 1} \right) = \dfrac{{{x^2}}}{2} + x + c\]
As we know by the property of natural logarithm
$
\ln x = y \\
\Rightarrow x = {e^y} \\
$
So using this in the above equation, we have
\[
\Rightarrow y + 1 = {e^{\dfrac{{{x^2}}}{2} + x + c}} \\
\Rightarrow y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1 \\
\]
Hence, the solution of the given equation is\[y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1\]
Note- To solve any differential equation, rearranging of the equation in the correct form at the beginning is a very basic step. Re-arrangement should be made in such a way as the terms on L.H.S. and R.H.S. must contain different variables. $\ln $ in the solution represents natural logarithm which means logarithm with base $e$.
Given equation: $\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Before solving the differential equation, first let us rearrange the given equation by taking some common terms.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = 1 + x + y + xy \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {1 + x} \right) + y\left( {1 + x} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {1 + x} \right)\left( {1 + y} \right) \\
\]
Now, let us separate the like terms together on either side of the equation.
\[ \Rightarrow \dfrac{{dy}}{{\left( {1 + y} \right)}} = \left( {1 + x} \right)dx\]
Now, integrating both the sides
\[ \Rightarrow \int {\dfrac{{dy}}{{\left( {1 + y} \right)}}} = \int {\left( {1 + x} \right)dx} \]
As we know that
\[\left[ {\because \int {\dfrac{{dx}}{x} = \ln x} } \right]\& \left[ {\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right]\]
So using the above formula and by solving the integral, we get
\[ \Rightarrow \ln \left( {y + 1} \right) = \dfrac{{{x^2}}}{2} + x + c\]
As we know by the property of natural logarithm
$
\ln x = y \\
\Rightarrow x = {e^y} \\
$
So using this in the above equation, we have
\[
\Rightarrow y + 1 = {e^{\dfrac{{{x^2}}}{2} + x + c}} \\
\Rightarrow y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1 \\
\]
Hence, the solution of the given equation is\[y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1\]
Note- To solve any differential equation, rearranging of the equation in the correct form at the beginning is a very basic step. Re-arrangement should be made in such a way as the terms on L.H.S. and R.H.S. must contain different variables. $\ln $ in the solution represents natural logarithm which means logarithm with base $e$.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE