Answer
Verified
490.8k+ views
Hint- We will try to separate both the terms of $x\& y$. In that case it will be easy to integrate separately.
Given equation: $\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Before solving the differential equation, first let us rearrange the given equation by taking some common terms.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = 1 + x + y + xy \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {1 + x} \right) + y\left( {1 + x} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {1 + x} \right)\left( {1 + y} \right) \\
\]
Now, let us separate the like terms together on either side of the equation.
\[ \Rightarrow \dfrac{{dy}}{{\left( {1 + y} \right)}} = \left( {1 + x} \right)dx\]
Now, integrating both the sides
\[ \Rightarrow \int {\dfrac{{dy}}{{\left( {1 + y} \right)}}} = \int {\left( {1 + x} \right)dx} \]
As we know that
\[\left[ {\because \int {\dfrac{{dx}}{x} = \ln x} } \right]\& \left[ {\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right]\]
So using the above formula and by solving the integral, we get
\[ \Rightarrow \ln \left( {y + 1} \right) = \dfrac{{{x^2}}}{2} + x + c\]
As we know by the property of natural logarithm
$
\ln x = y \\
\Rightarrow x = {e^y} \\
$
So using this in the above equation, we have
\[
\Rightarrow y + 1 = {e^{\dfrac{{{x^2}}}{2} + x + c}} \\
\Rightarrow y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1 \\
\]
Hence, the solution of the given equation is\[y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1\]
Note- To solve any differential equation, rearranging of the equation in the correct form at the beginning is a very basic step. Re-arrangement should be made in such a way as the terms on L.H.S. and R.H.S. must contain different variables. $\ln $ in the solution represents natural logarithm which means logarithm with base $e$.
Given equation: $\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Before solving the differential equation, first let us rearrange the given equation by taking some common terms.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = 1 + x + y + xy \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {1 + x} \right) + y\left( {1 + x} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {1 + x} \right)\left( {1 + y} \right) \\
\]
Now, let us separate the like terms together on either side of the equation.
\[ \Rightarrow \dfrac{{dy}}{{\left( {1 + y} \right)}} = \left( {1 + x} \right)dx\]
Now, integrating both the sides
\[ \Rightarrow \int {\dfrac{{dy}}{{\left( {1 + y} \right)}}} = \int {\left( {1 + x} \right)dx} \]
As we know that
\[\left[ {\because \int {\dfrac{{dx}}{x} = \ln x} } \right]\& \left[ {\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right]\]
So using the above formula and by solving the integral, we get
\[ \Rightarrow \ln \left( {y + 1} \right) = \dfrac{{{x^2}}}{2} + x + c\]
As we know by the property of natural logarithm
$
\ln x = y \\
\Rightarrow x = {e^y} \\
$
So using this in the above equation, we have
\[
\Rightarrow y + 1 = {e^{\dfrac{{{x^2}}}{2} + x + c}} \\
\Rightarrow y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1 \\
\]
Hence, the solution of the given equation is\[y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1\]
Note- To solve any differential equation, rearranging of the equation in the correct form at the beginning is a very basic step. Re-arrangement should be made in such a way as the terms on L.H.S. and R.H.S. must contain different variables. $\ln $ in the solution represents natural logarithm which means logarithm with base $e$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE