Answer
Verified
428.4k+ views
Hint: Here we will solve this question by comparing both the equations for \[{\text{X}}\] and \[{\text{Y}}\].
Also, we will use the matrix property of subtraction which states that if we need to subtract two matrices as given below:
\[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] and \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right]\] , then \[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
{a - e}&{b - f} \\
{c - g}&{d - h}
\end{array}} \right]\].
Complete step by step solution:
Step 1: We have given the two equations as shown below:
\[3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] …………………… (i)
\[{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………………. (ii)
By multiplying the equation (i) with \[3\], we get:
\[3\left( {3{\text{X - Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] ………………. (iii)
Step 2: By subtracting equation (iii) from equation (ii), we get:
\[\begin{gathered}
{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{8X - 0 = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 3} \\
{ - 3}&3
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{X}}\] , we get:
\[ \Rightarrow {\text{X = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 2}}{8}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Step 3: Similarly, for finding the value of \[{\text{Y}}\] we will again repeat the step number (1) and (2) as shown below:
By multiplying the equation (ii) with \[3\], we get:
\[3\left( {{\text{X - 3Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[3{\text{X}} - 9{\text{Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………. (iv)
Step 4: By subtracting the equation (iv) from equation (i), we get:
\[\begin{gathered}
3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{3X - 9Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{0 + 8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 3} \\
0&{ - 3}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{Y}}\] , we get:
\[ \Rightarrow {\text{Y = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{2}{8}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Therefore \[\because \] \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\] and \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Note: Students need to take care while solving the addition, subtraction or product of any two matrices. While doing the multiplication you should remember the below points:
The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix.
And the result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
Also, we will use the matrix property of subtraction which states that if we need to subtract two matrices as given below:
\[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] and \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right]\] , then \[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
{a - e}&{b - f} \\
{c - g}&{d - h}
\end{array}} \right]\].
Complete step by step solution:
Step 1: We have given the two equations as shown below:
\[3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] …………………… (i)
\[{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………………. (ii)
By multiplying the equation (i) with \[3\], we get:
\[3\left( {3{\text{X - Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] ………………. (iii)
Step 2: By subtracting equation (iii) from equation (ii), we get:
\[\begin{gathered}
{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{8X - 0 = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 3} \\
{ - 3}&3
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{X}}\] , we get:
\[ \Rightarrow {\text{X = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 2}}{8}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Step 3: Similarly, for finding the value of \[{\text{Y}}\] we will again repeat the step number (1) and (2) as shown below:
By multiplying the equation (ii) with \[3\], we get:
\[3\left( {{\text{X - 3Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[3{\text{X}} - 9{\text{Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………. (iv)
Step 4: By subtracting the equation (iv) from equation (i), we get:
\[\begin{gathered}
3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{3X - 9Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{0 + 8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 3} \\
0&{ - 3}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{Y}}\] , we get:
\[ \Rightarrow {\text{Y = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{2}{8}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Therefore \[\because \] \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\] and \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Note: Students need to take care while solving the addition, subtraction or product of any two matrices. While doing the multiplication you should remember the below points:
The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix.
And the result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE