
Solve the following$\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
Answer
525.6k+ views
Hint: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

The final image formed by a compound microscope is class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE

What is the energy band gap of silicon and germanium class 12 physics CBSE
