Answer
Verified
441.3k+ views
Hint: Where we are given a pair of linear equations and we have to find the value of x and y by using the given equation. We can solve the equation by the method of elimination or by using the method of substitution for the method of substitution. First we will find the value of one variable in the form of another for example we will find the value of x in terms of y then substitute that value in another equation. Then we will solve the equation and find the value of that variable. After that substitute the value of that variable in another equation and find the value of the remaining one variable.
Complete step-by-step answer:
Step1: We are given a pair of linear equations $3x - 2y = 7$ and $x + 3y = - 5$ by applying the method of substitution we will find the value of both variables. We will solve the second equation for $x$:
$ \Rightarrow x + 3y = - 5$
Subtracting $3y$ from both sides:
$ \Rightarrow x + 3y - 3y = - 5 - 3y$
On proper rearrangement we will get:
$ \Rightarrow x = - 5 - 3y$
Step2: Now we will substitute the value of x in the first equation and solve for $y$:
$ \Rightarrow 3( - 5 - 3y) - 2y = 7$
$ \Rightarrow - 15 - 9y - 2y = 7$
Adding $15$ both the sides we will get:
$ \Rightarrow 15 - 15 - 11y = 15 + 7$
$ \Rightarrow 0 - 11y = 22$
Dividing both sides by$ - 11$:
$ \Rightarrow \dfrac{{ - 11y}}{{ - 11}} = \dfrac{{22}}{{ - 11}}$
$ \Rightarrow y = - 2$
Step3: Substitute $ - 2$ for y in the solution to the second equation at the end of step1 and calculate $x$:
$ \Rightarrow x = - 5 - \left( {3 \times - 2} \right)$
On further solving we will get:
$ \Rightarrow x = - 5 + 6$
$x = 1$
So the solution is $x = 1;y = - 2$
Hence the solution is $x = 1;y = - 2$
Note:
This type of question we can solve by two methods: first is substitution and the second one is elimination. In this method the main thing is to find the value of one variable in terms of other students mainly doing the mistakes here.
Alternate method:
We are given two equations i.e.
$3x - 2y = 7$…(1)
$x + 3y = - 5$….(2)
Multiply (2) equation by $3$
$3x + 9y = - 15$…(3)
Subtract equation (3) from (1)
$ 3x+ 9y = - 15 $
$ \underline {( - ){{3x}} - 2y = 7} $
$ 11y = - 22 $
Now dividing the both sides by $11$
$y = - 2$
Substitute $y = - 2$ in equation (1) we get the value of x
$ \Rightarrow 3x + 4 = 7$
$ \Rightarrow 3x = 3$
$ \Rightarrow x = 1$
Here also we will get the same solution i.e. $x = 1;y = - 2$
Complete step-by-step answer:
Step1: We are given a pair of linear equations $3x - 2y = 7$ and $x + 3y = - 5$ by applying the method of substitution we will find the value of both variables. We will solve the second equation for $x$:
$ \Rightarrow x + 3y = - 5$
Subtracting $3y$ from both sides:
$ \Rightarrow x + 3y - 3y = - 5 - 3y$
On proper rearrangement we will get:
$ \Rightarrow x = - 5 - 3y$
Step2: Now we will substitute the value of x in the first equation and solve for $y$:
$ \Rightarrow 3( - 5 - 3y) - 2y = 7$
$ \Rightarrow - 15 - 9y - 2y = 7$
Adding $15$ both the sides we will get:
$ \Rightarrow 15 - 15 - 11y = 15 + 7$
$ \Rightarrow 0 - 11y = 22$
Dividing both sides by$ - 11$:
$ \Rightarrow \dfrac{{ - 11y}}{{ - 11}} = \dfrac{{22}}{{ - 11}}$
$ \Rightarrow y = - 2$
Step3: Substitute $ - 2$ for y in the solution to the second equation at the end of step1 and calculate $x$:
$ \Rightarrow x = - 5 - \left( {3 \times - 2} \right)$
On further solving we will get:
$ \Rightarrow x = - 5 + 6$
$x = 1$
So the solution is $x = 1;y = - 2$
Hence the solution is $x = 1;y = - 2$
Note:
This type of question we can solve by two methods: first is substitution and the second one is elimination. In this method the main thing is to find the value of one variable in terms of other students mainly doing the mistakes here.
Alternate method:
We are given two equations i.e.
$3x - 2y = 7$…(1)
$x + 3y = - 5$….(2)
Multiply (2) equation by $3$
$3x + 9y = - 15$…(3)
Subtract equation (3) from (1)
$ 3x+ 9y = - 15 $
$ \underline {( - ){{3x}} - 2y = 7} $
$ 11y = - 22 $
Now dividing the both sides by $11$
$y = - 2$
Substitute $y = - 2$ in equation (1) we get the value of x
$ \Rightarrow 3x + 4 = 7$
$ \Rightarrow 3x = 3$
$ \Rightarrow x = 1$
Here also we will get the same solution i.e. $x = 1;y = - 2$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE