Answer
Verified
397.2k+ views
Hint: Here in this question, we have to solve the variable \[x\], \[y\], and \[z\] using matrices. The method of solving this type of question is known as “Gauss-Jordan elimination”. First, we have to construct an augmented matrix by using the coefficients of variables and later by the row echelon form and using the back substitution method we get the required solution.
Complete step by step solution:
The Gauss-Jordan method, also known as Gauss-Jordan elimination method is used to solve a system of linear equations and is a modified version of Gauss Elimination Method.
we have to perform 2 different process in Gauss Elimination Method i.e.,
1) Formation of upper triangular matrix, and
2) Back substitution
using reduced row echelon form.
Consider the given system of linear equations:
\[2x + 5y - 2z = 14\]--------(1)
\[5x - 6y + 2z = 0\]--------(2)
\[4x - y + 3z = - 7\]--------(3)
Now, write the augmented matrix of the system of linear equations
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
4&{ - 1}&3&|&{ - 7}
\end{array}} \right]\]
Make the pivot in the first column and the first row
Now, Eliminate the elements in matrix step by step, using row reduced echelon form
\[{R_3} \to {R_3} - 2{R_1}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_1} \to 5{R_1}\] and \[{R_2} \to 2{R_2}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
{10}&{ - 12}&4&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to {R_2} - {R_1}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 37}&{14}&|&{ - 70} \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to 11{R_2}\] and \[{R_3} \to 37{R_3}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&{ - 407}&{259}&|&{ - 1295}
\end{array}} \right]\]
\[{R_3} \to {R_3} - {R_2}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&0&{105}&|&{ - 525}
\end{array}} \right]\]
Now using the back substituting method to get the values of variables \[x\], \[y\] and \[z\].
Write the three equation:
\[10x + 25y - 10z = 70\]-----(4)
\[ - 407y + 154z = - 770\]------(5)
\[105z = - 525\]----------(6)
Let us take equation (6)
\[ \Rightarrow \,\,105z = - 525\]
Divide both side by 105, then
\[ \Rightarrow \,\,z = - \dfrac{{525}}{{105}}\]
\[ \Rightarrow \,\,z = - 5\]
Hence, the value of \[z = - 5\]
Substitute the \[z\] value in equation (5), then
\[ \Rightarrow \,\, - 407y + 154\left( { - 5} \right) = - 770\]
\[ \Rightarrow \,\, - 407y - 770 = - 770\]
Add 770 on both side, then we have
\[ \Rightarrow \,\, - 407y = - 770 + 770\]
\[ \Rightarrow \,\, - 407y = 0\]
Divide both side by -407, the n
\[ \Rightarrow \,\,y = \dfrac{0}{{ - 407}}\]
\[\therefore \,\,y = 0\]
Now, substitute the \[y\] and \[z\] value in equation (4), then
\[ \Rightarrow \,\,10x + 25\left( 0 \right) - 10\left( { - 5} \right) = 70\]
\[ \Rightarrow \,\,10x + 0 + 50 = 70\]
Subtract 50 on both side, then we get
\[ \Rightarrow \,\,10x = 70 - 50\]
\[ \Rightarrow \,\,10x = 20\]
Divide 10 on both side, then
\[ \Rightarrow \,x = \dfrac{{20}}{{10}}\]
\[\therefore \,\,x = 2\]
Hence, the required solution is
\[\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
0 \\
{ - 5}
\end{array}} \right]\]
Note: When solving this type of questions, when an augmented matrix contains the coefficients of the unknowns and the "pure" coefficients. You can manipulate the rows of this matrix (elementary row operations) to transform the coefficients and to "read", at the end, the solutions of your system. And while solving the back substitution method we take the equation from the bottom of the augmented matrix.
Complete step by step solution:
The Gauss-Jordan method, also known as Gauss-Jordan elimination method is used to solve a system of linear equations and is a modified version of Gauss Elimination Method.
we have to perform 2 different process in Gauss Elimination Method i.e.,
1) Formation of upper triangular matrix, and
2) Back substitution
using reduced row echelon form.
Consider the given system of linear equations:
\[2x + 5y - 2z = 14\]--------(1)
\[5x - 6y + 2z = 0\]--------(2)
\[4x - y + 3z = - 7\]--------(3)
Now, write the augmented matrix of the system of linear equations
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
4&{ - 1}&3&|&{ - 7}
\end{array}} \right]\]
Make the pivot in the first column and the first row
Now, Eliminate the elements in matrix step by step, using row reduced echelon form
\[{R_3} \to {R_3} - 2{R_1}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_1} \to 5{R_1}\] and \[{R_2} \to 2{R_2}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
{10}&{ - 12}&4&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to {R_2} - {R_1}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 37}&{14}&|&{ - 70} \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to 11{R_2}\] and \[{R_3} \to 37{R_3}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&{ - 407}&{259}&|&{ - 1295}
\end{array}} \right]\]
\[{R_3} \to {R_3} - {R_2}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&0&{105}&|&{ - 525}
\end{array}} \right]\]
Now using the back substituting method to get the values of variables \[x\], \[y\] and \[z\].
Write the three equation:
\[10x + 25y - 10z = 70\]-----(4)
\[ - 407y + 154z = - 770\]------(5)
\[105z = - 525\]----------(6)
Let us take equation (6)
\[ \Rightarrow \,\,105z = - 525\]
Divide both side by 105, then
\[ \Rightarrow \,\,z = - \dfrac{{525}}{{105}}\]
\[ \Rightarrow \,\,z = - 5\]
Hence, the value of \[z = - 5\]
Substitute the \[z\] value in equation (5), then
\[ \Rightarrow \,\, - 407y + 154\left( { - 5} \right) = - 770\]
\[ \Rightarrow \,\, - 407y - 770 = - 770\]
Add 770 on both side, then we have
\[ \Rightarrow \,\, - 407y = - 770 + 770\]
\[ \Rightarrow \,\, - 407y = 0\]
Divide both side by -407, the n
\[ \Rightarrow \,\,y = \dfrac{0}{{ - 407}}\]
\[\therefore \,\,y = 0\]
Now, substitute the \[y\] and \[z\] value in equation (4), then
\[ \Rightarrow \,\,10x + 25\left( 0 \right) - 10\left( { - 5} \right) = 70\]
\[ \Rightarrow \,\,10x + 0 + 50 = 70\]
Subtract 50 on both side, then we get
\[ \Rightarrow \,\,10x = 70 - 50\]
\[ \Rightarrow \,\,10x = 20\]
Divide 10 on both side, then
\[ \Rightarrow \,x = \dfrac{{20}}{{10}}\]
\[\therefore \,\,x = 2\]
Hence, the required solution is
\[\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
0 \\
{ - 5}
\end{array}} \right]\]
Note: When solving this type of questions, when an augmented matrix contains the coefficients of the unknowns and the "pure" coefficients. You can manipulate the rows of this matrix (elementary row operations) to transform the coefficients and to "read", at the end, the solutions of your system. And while solving the back substitution method we take the equation from the bottom of the augmented matrix.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE