Answer
Verified
459.3k+ views
Hint: Here we will use the property of functions \[f\left( x \right)\] and \[g\left( x \right)\] which states that we can do the composition between these two functions, which means that we can plug \[g\left( x \right)\] into \[f\left( x \right)\]. This is written as \[\left( {fog} \right)\left( x \right)\] , pronounced as
\[f\] compose \[g\] of \[x\].
\[\left( {fog} \right)\left( x \right) = f\left( {g\left( x \right)} \right)\].
Complete step-by-step answer:
Step (1): For statement (A):
It is given that \[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\]. Now, we need to check if \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\].
For calculating the LHS side of the equation \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], we will substitute the values of functions \[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\] in it.
\[ \Rightarrow f\left[ {g\left( a \right)} \right] = \log \left( {{a^3}} \right)\] (\[\because \]\[g\left( x \right) = {x^3}\] ) …….. (1)
\[ \Rightarrow f\left[ {g\left( b \right)} \right] = \log \left( {{b^3}} \right)\] (\[\because \]\[g\left( x \right) = {x^3}\] ) …………. (2)
Now, by substituting the values from (1) and (2) in the LHS side of the equation \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], we get:
\[ \Rightarrow f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = \log {a^3} + \log {b^3}\]
But we know that \[\log {a^3} + \log {b^3} = \log {a^3}{b^3} = \log {\left( {ab} \right)^3}\] , by putting this value in the expression \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right]\], we get:
\[ \Rightarrow f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = \log {\left( {ab} \right)^3}\]
Now for calculating the RHS side of the equation \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], we will substitute the values of \[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\] in it.
\[ \Rightarrow f\left[ {g\left( {ab} \right)} \right] = \log {\left( {ab} \right)^3}\] (\[\because \]\[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\])
So, for the expression \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], LHS= RHS, hence the statement is true.
Step 2: Statement (2):
We need to check if every trigonometric function is an even function.
Now we know that a function is said to be even if \[f\left( { - x} \right) = f\left( x \right)\]. For checking this we will take an example as shown below:
For checking if \[\sin \left( x \right)\]is an even function or not, we need to prove that \[\sin \left( { - x} \right) = \sin \left( x \right)\] but that is not true. Because \[\sin \left( { - x} \right) = - \sin \left( x \right)\]. Hence the function is not even.
It is proved that all trigonometric functions are not even. So, statement (B) is false.
Option C which states that statement A is correct and statement B is false is correct.
Note: In these types of questions, students’ needs to remember that for two different functions \[f\left( x \right)\] and \[g\left( x \right)\]:
\[\left( {fog} \right)\left( x \right) = f\left( {g\left( x \right)} \right)\]
Also, you should remember that all trigonometric functions are not even. A function is said to be an odd function if for any number \[x\] , \[f\left( { - x} \right) = - f\left( x \right)\]. And a function is said to be even for any number \[x\] , \[f\left( { - x} \right) = f\left( x \right)\].
Sine and tangent are odd functions. But cosine is an even function.
\[f\] compose \[g\] of \[x\].
\[\left( {fog} \right)\left( x \right) = f\left( {g\left( x \right)} \right)\].
Complete step-by-step answer:
Step (1): For statement (A):
It is given that \[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\]. Now, we need to check if \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\].
For calculating the LHS side of the equation \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], we will substitute the values of functions \[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\] in it.
\[ \Rightarrow f\left[ {g\left( a \right)} \right] = \log \left( {{a^3}} \right)\] (\[\because \]\[g\left( x \right) = {x^3}\] ) …….. (1)
\[ \Rightarrow f\left[ {g\left( b \right)} \right] = \log \left( {{b^3}} \right)\] (\[\because \]\[g\left( x \right) = {x^3}\] ) …………. (2)
Now, by substituting the values from (1) and (2) in the LHS side of the equation \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], we get:
\[ \Rightarrow f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = \log {a^3} + \log {b^3}\]
But we know that \[\log {a^3} + \log {b^3} = \log {a^3}{b^3} = \log {\left( {ab} \right)^3}\] , by putting this value in the expression \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right]\], we get:
\[ \Rightarrow f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = \log {\left( {ab} \right)^3}\]
Now for calculating the RHS side of the equation \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], we will substitute the values of \[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\] in it.
\[ \Rightarrow f\left[ {g\left( {ab} \right)} \right] = \log {\left( {ab} \right)^3}\] (\[\because \]\[f\left( x \right) = \log x\] and \[g\left( x \right) = {x^3}\])
So, for the expression \[f\left[ {g\left( a \right)} \right] + f\left[ {g\left( b \right)} \right] = f\left[ {g\left( {ab} \right)} \right]\], LHS= RHS, hence the statement is true.
Step 2: Statement (2):
We need to check if every trigonometric function is an even function.
Now we know that a function is said to be even if \[f\left( { - x} \right) = f\left( x \right)\]. For checking this we will take an example as shown below:
For checking if \[\sin \left( x \right)\]is an even function or not, we need to prove that \[\sin \left( { - x} \right) = \sin \left( x \right)\] but that is not true. Because \[\sin \left( { - x} \right) = - \sin \left( x \right)\]. Hence the function is not even.
It is proved that all trigonometric functions are not even. So, statement (B) is false.
Option C which states that statement A is correct and statement B is false is correct.
Note: In these types of questions, students’ needs to remember that for two different functions \[f\left( x \right)\] and \[g\left( x \right)\]:
\[\left( {fog} \right)\left( x \right) = f\left( {g\left( x \right)} \right)\]
Also, you should remember that all trigonometric functions are not even. A function is said to be an odd function if for any number \[x\] , \[f\left( { - x} \right) = - f\left( x \right)\]. And a function is said to be even for any number \[x\] , \[f\left( { - x} \right) = f\left( x \right)\].
Sine and tangent are odd functions. But cosine is an even function.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE