Take the z=axis as vertical and the x-y plane as horizontal. A particle ‘A’ is projected with velocity $4\sqrt 2 m{s^{ - 1}}$ making an angle $45^\circ $ to the horizontal. Particle B is projected at $5m{s^{ - 1}}$ an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ to y axis in y-z plane then velocity of B wrt A.
A) Has its initial magnitude$5m{s^{ - 1}}$.
B) Magnitude will change with time.
C) Lies in the xy plane.
D) Will initially make an angle$\left( {\theta + \dfrac{\pi }{2}} \right)$.
Answer
Verified
123k+ views
Hint: The x,y and z are the three directions which are mutually perpendicular to each other, the particle A is in plane x-z and the particle B is in the plane y-z. The relative velocity is the difference between the velocities of the two bodies.
Formula used:
The relative velocity of the two particles is given by,
$ \Rightarrow {v_B} - {v_A}$
Where the velocity of particle B is ${v_B}$ and the velocity of particle A is${v_A}$.
Complete step by step solution:
In this problem it is given that a particle ‘A’ is projected with velocity $4\sqrt 2 m{s^{ - 1}}$ making an angle $45^\circ $ to the horizontal. Particle B is projected at $5m{s^{ - 1}}$ an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ to y axis in y-z plane then we need to find the velocity of B wrt A.
According to the condition the figure will be.
The velocity of particle A is ${v_A} = 4\hat i + 4\hat k$ and the velocity of particle B is equal to ${v_B} = 3\hat j + 4\hat k$.
The relative velocity of the particle B with respect to particle A is equal to,
$ \Rightarrow {v_B} - {v_A} = \left( {3\hat j + 4\hat k} \right) - \left( {4\hat i + 4\hat k} \right)$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j - 4\hat i$
The magnitude of the velocity is equal to,
$ \Rightarrow {v_B} - {v_A} = \sqrt {{3^2} + {4^2}} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {9 + 16} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {25} $
$ \Rightarrow {v_B} - {v_A} = 5m{s^{ - 1}}$
Which means option A is correct. The magnitude of the acceleration will not change with time and therefore the option B is wrong.
The relative velocity is ${v_B} - {v_A} = 3\hat j - 4\hat i$ which means it is in the x-y plane, the option C is also correct. The angle of the initially equal to,
$ \Rightarrow \theta = {\tan ^{ - 1}}\left( { - \dfrac{4}{3}} \right)$
As the angle is negative and therefore we add $\dfrac{\pi }{2}$ so the angle becomes $\theta + \dfrac{\pi }{2}$, so the option D is correct.
The wrong option is option B, so the answer for this problem is option B.
Note: The students are advised to remember the formula of the relative velocity and also the diagram of the velocity of the particle A and particle B should be drawn very carefully as the answer is very dependent on the diagram.
Formula used:
The relative velocity of the two particles is given by,
$ \Rightarrow {v_B} - {v_A}$
Where the velocity of particle B is ${v_B}$ and the velocity of particle A is${v_A}$.
Complete step by step solution:
In this problem it is given that a particle ‘A’ is projected with velocity $4\sqrt 2 m{s^{ - 1}}$ making an angle $45^\circ $ to the horizontal. Particle B is projected at $5m{s^{ - 1}}$ an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ to y axis in y-z plane then we need to find the velocity of B wrt A.
According to the condition the figure will be.
The velocity of particle A is ${v_A} = 4\hat i + 4\hat k$ and the velocity of particle B is equal to ${v_B} = 3\hat j + 4\hat k$.
The relative velocity of the particle B with respect to particle A is equal to,
$ \Rightarrow {v_B} - {v_A} = \left( {3\hat j + 4\hat k} \right) - \left( {4\hat i + 4\hat k} \right)$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j - 4\hat i$
The magnitude of the velocity is equal to,
$ \Rightarrow {v_B} - {v_A} = \sqrt {{3^2} + {4^2}} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {9 + 16} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {25} $
$ \Rightarrow {v_B} - {v_A} = 5m{s^{ - 1}}$
Which means option A is correct. The magnitude of the acceleration will not change with time and therefore the option B is wrong.
The relative velocity is ${v_B} - {v_A} = 3\hat j - 4\hat i$ which means it is in the x-y plane, the option C is also correct. The angle of the initially equal to,
$ \Rightarrow \theta = {\tan ^{ - 1}}\left( { - \dfrac{4}{3}} \right)$
As the angle is negative and therefore we add $\dfrac{\pi }{2}$ so the angle becomes $\theta + \dfrac{\pi }{2}$, so the option D is correct.
The wrong option is option B, so the answer for this problem is option B.
Note: The students are advised to remember the formula of the relative velocity and also the diagram of the velocity of the particle A and particle B should be drawn very carefully as the answer is very dependent on the diagram.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line