The angle of depression of the top and the bottom of a 7m tall building from the top of tower are ${45^ \circ }$ and ${60^ \circ }$ respectively, find the height of the tower.
Answer
Verified
482.7k+ views
Hint: By looking at the given figure we can clearly see the right angled triangle AEC and ABD. And we have to find the length of AB, also the length of the CD is given to us.
We will use suitable trigonometric functions for each of the triangles and then solving the equation formed, we will get required length.
Complete step-by-step answer:
Given angle of depression of top of the building from top of tower is ${45^ \circ }$,
And the angle of depression of the bottom of the building from top of tower is ${60^ \circ }$.
Let the height of the tower be h.
Length of the building is $CD = 7m$ -(1)
Now,
$AE = AB - EB$
As, $EB = CD$,
$AE = h - CD$
Using (1),
$AE = h - 7$ -(2)
Now from the above figure we can see a right-angled triangle AEC-
Therefore,
$
\tan \theta = \dfrac{{perpendicular}}{{base}} \\
\tan {45^ \circ } = \dfrac{{AE}}{{CE}} \\
$
Using $\tan {45^ \circ } = 1$ and (2) equation,
$1 = \dfrac{{h - 7}}{{BD}}$
$BD = h - 7$ -(3)
Now we can also see the right-angled triangle ABD-
So,
$\tan {60^ \circ } = \dfrac{{AB}}{{BD}}$
Using $\tan {60^ \circ } = \sqrt 3 $ and (3) equation,
$
\sqrt 3 = \dfrac{h}{{h - 7}} \\
\sqrt 3 h - 7\sqrt 3 = h \\
\sqrt 3 h - h = 7\sqrt 3 \\
h\left( {\sqrt 3 - 1} \right) = 7\sqrt 3 \\
h = \dfrac{{7\sqrt 3 }}{{\sqrt 3 - 1}}m \\
$
Therefore, the height of the tower is $\dfrac{{7\sqrt 3 }}{{\sqrt 3 - 1}}$m.
Note: In the above question we have used $\tan \theta $ because if we see the diagram there are two right-angled triangles formed with bases of equal length, perpendicular is required and the corresponding angles are given.
Hence, we need a trigonometric function including base and perpendicular which is $\tan \theta $.
Also, we can rationalize the final answer and we will obtain height of tower equal to-
$\dfrac{{7\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{2}$.
We will use suitable trigonometric functions for each of the triangles and then solving the equation formed, we will get required length.
Complete step-by-step answer:
Given angle of depression of top of the building from top of tower is ${45^ \circ }$,
And the angle of depression of the bottom of the building from top of tower is ${60^ \circ }$.
Let the height of the tower be h.
Length of the building is $CD = 7m$ -(1)
Now,
$AE = AB - EB$
As, $EB = CD$,
$AE = h - CD$
Using (1),
$AE = h - 7$ -(2)
Now from the above figure we can see a right-angled triangle AEC-
Therefore,
$
\tan \theta = \dfrac{{perpendicular}}{{base}} \\
\tan {45^ \circ } = \dfrac{{AE}}{{CE}} \\
$
Using $\tan {45^ \circ } = 1$ and (2) equation,
$1 = \dfrac{{h - 7}}{{BD}}$
$BD = h - 7$ -(3)
Now we can also see the right-angled triangle ABD-
So,
$\tan {60^ \circ } = \dfrac{{AB}}{{BD}}$
Using $\tan {60^ \circ } = \sqrt 3 $ and (3) equation,
$
\sqrt 3 = \dfrac{h}{{h - 7}} \\
\sqrt 3 h - 7\sqrt 3 = h \\
\sqrt 3 h - h = 7\sqrt 3 \\
h\left( {\sqrt 3 - 1} \right) = 7\sqrt 3 \\
h = \dfrac{{7\sqrt 3 }}{{\sqrt 3 - 1}}m \\
$
Therefore, the height of the tower is $\dfrac{{7\sqrt 3 }}{{\sqrt 3 - 1}}$m.
Note: In the above question we have used $\tan \theta $ because if we see the diagram there are two right-angled triangles formed with bases of equal length, perpendicular is required and the corresponding angles are given.
Hence, we need a trigonometric function including base and perpendicular which is $\tan \theta $.
Also, we can rationalize the final answer and we will obtain height of tower equal to-
$\dfrac{{7\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{2}$.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Write an application to the principal requesting five class 10 english CBSE
Difference between mass and weight class 10 physics CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples
What are five examples of facts and opinions class 10 english CBSE
Which state has the longest coastline in India A Tamil class 10 social science CBSE
10 examples of evaporation in daily life with explanations