Answer
Verified
401.1k+ views
Hint : Binding energy of the nucleon can be defined as the energy released due to the mass difference in the formation of a nucleus. Binding energy per nucleon is the binding energy divided by the nucleon number. Average binding energy is a constant value.
Complete Step By Step Answer:
We know that the nucleus is made of protons and neutrons. This means, if we consider logically, then the mass of the nucleus should be equal to the sum of the mass of total protons and total neutrons.
However, it is proved from the mass spectroscopy experiments, that the mass of the nucleus is always less than the sum of the mass of the protons and neutrons in the free-state.
This difference in the masses is known as the mass defect, which can be calculated as,
$ \Delta M = (Z{m_p} + (A - Z){m_n}) - M $
Where, $ Z $ is the atomic number of the element, $ A $ is the atomic mass number of the element, $ {m_p} $ is the mass of the proton, $ {m_n} $ is the mass of the nucleus, and $ M $ is the mass of the nucleus obtained experimentally through mass spectroscopy.
We can have a better understanding of this mass defect by considering Einstein’s theory of relativity equation $ E = m{c^2} $
Thus, when the nucleons form a nucleus from the free-state, energy equivalent to this mass defect is released which is known as the binding energy of the nucleus $ {E_b} $ .
Binding energy can also be defined as the energy required to be provided to break the nucleus into individual constituents.
Now, the practically more used term, the binding energy per nucleon can be defined as the ratio of the binding energy and the atomic mass number or the total number of nucleons.
$ \therefore {E_{bn}} = \dfrac{{{E_b}}}{A} $
The plot for binding energy per nucleon of various elements can be shown as below,
From the graph, we can understand that the maximum binding energy per nucleon is maximum for $ A = 56 $ .
And the average binding energy per nucleon from the graph can be deduced to be $ 8.5\;MeV $ .
Hence, the correct answer is Option $ (B) $ .
Note :
Here, we must know the difference between the mass-energy of a nucleon and nuclear binding energy per nucleon. Mass energy is the equivalence between mass and energy, and how they are interrelated. Mass energy of a nucleon is $ 931\;MeV $ .
Complete Step By Step Answer:
We know that the nucleus is made of protons and neutrons. This means, if we consider logically, then the mass of the nucleus should be equal to the sum of the mass of total protons and total neutrons.
However, it is proved from the mass spectroscopy experiments, that the mass of the nucleus is always less than the sum of the mass of the protons and neutrons in the free-state.
This difference in the masses is known as the mass defect, which can be calculated as,
$ \Delta M = (Z{m_p} + (A - Z){m_n}) - M $
Where, $ Z $ is the atomic number of the element, $ A $ is the atomic mass number of the element, $ {m_p} $ is the mass of the proton, $ {m_n} $ is the mass of the nucleus, and $ M $ is the mass of the nucleus obtained experimentally through mass spectroscopy.
We can have a better understanding of this mass defect by considering Einstein’s theory of relativity equation $ E = m{c^2} $
Thus, when the nucleons form a nucleus from the free-state, energy equivalent to this mass defect is released which is known as the binding energy of the nucleus $ {E_b} $ .
Binding energy can also be defined as the energy required to be provided to break the nucleus into individual constituents.
Now, the practically more used term, the binding energy per nucleon can be defined as the ratio of the binding energy and the atomic mass number or the total number of nucleons.
$ \therefore {E_{bn}} = \dfrac{{{E_b}}}{A} $
The plot for binding energy per nucleon of various elements can be shown as below,
From the graph, we can understand that the maximum binding energy per nucleon is maximum for $ A = 56 $ .
And the average binding energy per nucleon from the graph can be deduced to be $ 8.5\;MeV $ .
Hence, the correct answer is Option $ (B) $ .
Note :
Here, we must know the difference between the mass-energy of a nucleon and nuclear binding energy per nucleon. Mass energy is the equivalence between mass and energy, and how they are interrelated. Mass energy of a nucleon is $ 931\;MeV $ .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What was the Metternich system and how did it provide class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE