
The critical velocity of a satellite is inversely proportional to the square root of the_______
but it is independent of mass of____________
(A) radius of the orbit, the satellite
(B) mass of the earth, the satellite
(C) mass of the satellite, the earth
(D) radius of the earth, the earth
Answer
139.8k+ views
Hint To answer this question, we need to use the expression of the critical velocity. Then we have to manipulate that expression in terms of the quantities mentioned in the options.
Formula Used The formulae used to solve this question are
${v_c} = \sqrt {g({R_e} + h)} $
$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
${v_c}$ is the critical velocity of a satellite, ${R_e}$ is the radius of earth, ${M_e}$is the mass of the earth,$h$ is the height of the satellite above the earth.
Complete step-by-step answer
We know that the critical velocity of a satellite revolving around the earth is given by
${v_c} = \sqrt {g({R_e} + h)} $
We know that$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
Substituting this in the above equation, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}\left( {{R_e} + h} \right)} $
On simplifying, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{\left( {{R_e} + h} \right)}}} $
As we can see from the above expression for the critical velocity of a satellite, that it is directly proportional to the square root of the mass of the earth. So, this means that the critical velocity is not independent of the mass of the earth.
So, options C and D are incorrect.
Also, from the above expression we can see that the critical velocity of the satellite is inversely proportional to the square root of the radius of the orbit. And there is no term containing the mass of the satellite in the right hand side of the above expression. Therefore, the critical velocity is independent of the mass of the satellite.
Hence, the correct answer is option A.
Note: You might be wondering why the mass of the satellite is not there in the final expression of the critical velocity. The answer to this question comes from the derivation of the critical velocity. We know that the critical velocity is the minimum horizontal velocity given to a satellite to keep it revolving in the earth’s orbit. So, it is obtained by keeping the gravitational force of the earth on the satellite equal to the centripetal force required to keep it moving in the earth’s orbit. Since, both the forces are proportional to the mass of the satellite, so it gets cancelled out of the final expression of the critical velocity.
Formula Used The formulae used to solve this question are
${v_c} = \sqrt {g({R_e} + h)} $
$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
${v_c}$ is the critical velocity of a satellite, ${R_e}$ is the radius of earth, ${M_e}$is the mass of the earth,$h$ is the height of the satellite above the earth.
Complete step-by-step answer
We know that the critical velocity of a satellite revolving around the earth is given by
${v_c} = \sqrt {g({R_e} + h)} $
We know that$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
Substituting this in the above equation, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}\left( {{R_e} + h} \right)} $
On simplifying, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{\left( {{R_e} + h} \right)}}} $
As we can see from the above expression for the critical velocity of a satellite, that it is directly proportional to the square root of the mass of the earth. So, this means that the critical velocity is not independent of the mass of the earth.
So, options C and D are incorrect.
Also, from the above expression we can see that the critical velocity of the satellite is inversely proportional to the square root of the radius of the orbit. And there is no term containing the mass of the satellite in the right hand side of the above expression. Therefore, the critical velocity is independent of the mass of the satellite.
Hence, the correct answer is option A.
Note: You might be wondering why the mass of the satellite is not there in the final expression of the critical velocity. The answer to this question comes from the derivation of the critical velocity. We know that the critical velocity is the minimum horizontal velocity given to a satellite to keep it revolving in the earth’s orbit. So, it is obtained by keeping the gravitational force of the earth on the satellite equal to the centripetal force required to keep it moving in the earth’s orbit. Since, both the forces are proportional to the mass of the satellite, so it gets cancelled out of the final expression of the critical velocity.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
