Answer
Verified
399.6k+ views
Hint: Before we get into the problem, we need to know some differentiation formulae.
\[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\], using this formula we need to find the first and second derivative of the given solution.
From that we will find the values of a and b.
Complete step-by-step solution:
It is given that the solution of the differential equation is, \[y = a{x^2} + bx\].
Let us find the first and second derivatives of \[y\].
We know that, \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\].
Therefore, \[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(a{x^2} + bx)\]
On differentiating this with respect to \[x\] we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 2ax + b\]
Let us rename it as, \[{y_1} = 2ax + b\].
Now let us find the second derivative of \[y\].
\[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {2ax + b} \right)\]
On differentiating the above expression with respect to x we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 2a\]
Let us rename it as, \[{y_2} = 2a\].
From this we get, \[a = \dfrac{{{y_2}}}{2}\]. And from \[{y_1}\]we get, \[b = {y_1} - {y_2}x\].
Thus, we got the vales of a and b. Now let us substitute these in the given solution we get,
\[y = \dfrac{{{y_2}}}{2}{x^2} + ({y_1} - {y_2}x)x\]
On simplifying this we get,
\[ \Rightarrow y = \dfrac{{{y_2}}}{2}{x^2} + {y_1}x - {y_2}{x^2}\]
On further simplification we get
\[ \Rightarrow y = \dfrac{{{y_2}{x^2} + 2{y_1}x - 2{y_2}{x^2}}}{2}\]
Lets simplify it further.
\[ \Rightarrow y = \dfrac{{2{y_1}x - {y_2}{x^2}}}{2}\]
Taking the \[2\]to the other side we get,
\[ \Rightarrow 2y = 2{y_1}x - {y_2}{x^2}\]
Let us get all the terms to one side.
\[ \Rightarrow 2y - 2{y_1}x + {y_2}{x^2} = 0\]
Rearranging the terms, we get
\[ \Rightarrow {y_2}{x^2} - 2{y_1}x + 2y = 0\]
Thus, this is the required differential equation whose solution is \[y = a{x^2} + bx\].
Note: When the solution is given, we first try to find the values of a and b. This can be done by reducing the given solution by finding its derivative since a and b are the constant values. After finding the values of a and b in terms of derivatives of y, we will substitute it in the solution to find the required differential equation.
\[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\], using this formula we need to find the first and second derivative of the given solution.
From that we will find the values of a and b.
Complete step-by-step solution:
It is given that the solution of the differential equation is, \[y = a{x^2} + bx\].
Let us find the first and second derivatives of \[y\].
We know that, \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\].
Therefore, \[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(a{x^2} + bx)\]
On differentiating this with respect to \[x\] we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 2ax + b\]
Let us rename it as, \[{y_1} = 2ax + b\].
Now let us find the second derivative of \[y\].
\[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {2ax + b} \right)\]
On differentiating the above expression with respect to x we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 2a\]
Let us rename it as, \[{y_2} = 2a\].
From this we get, \[a = \dfrac{{{y_2}}}{2}\]. And from \[{y_1}\]we get, \[b = {y_1} - {y_2}x\].
Thus, we got the vales of a and b. Now let us substitute these in the given solution we get,
\[y = \dfrac{{{y_2}}}{2}{x^2} + ({y_1} - {y_2}x)x\]
On simplifying this we get,
\[ \Rightarrow y = \dfrac{{{y_2}}}{2}{x^2} + {y_1}x - {y_2}{x^2}\]
On further simplification we get
\[ \Rightarrow y = \dfrac{{{y_2}{x^2} + 2{y_1}x - 2{y_2}{x^2}}}{2}\]
Lets simplify it further.
\[ \Rightarrow y = \dfrac{{2{y_1}x - {y_2}{x^2}}}{2}\]
Taking the \[2\]to the other side we get,
\[ \Rightarrow 2y = 2{y_1}x - {y_2}{x^2}\]
Let us get all the terms to one side.
\[ \Rightarrow 2y - 2{y_1}x + {y_2}{x^2} = 0\]
Rearranging the terms, we get
\[ \Rightarrow {y_2}{x^2} - 2{y_1}x + 2y = 0\]
Thus, this is the required differential equation whose solution is \[y = a{x^2} + bx\].
Note: When the solution is given, we first try to find the values of a and b. This can be done by reducing the given solution by finding its derivative since a and b are the constant values. After finding the values of a and b in terms of derivatives of y, we will substitute it in the solution to find the required differential equation.
Recently Updated Pages
Points A and B are situated along the extended axis class 12 physics JEE_Main
Two identical pn junctions may be connected in series class 12 physics JEE_Main
A piece of copper and another of germanium are cooled class 12 physics JEE_Main
A piece of semiconductor is connected in series in class 12 phy sec 1 JEE_Main
In a pn junction diode not connected to any circui class 12 physics JEE_Main
The width of depletion region in a pn junction is 500 class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE