Answer
Verified
450k+ views
Hint: The dissociation constant is determined as the product of the square of the degree of dissociation and concentration. The degree of dissociation tells how much an electrolyte dissociates in solution. The degree of dissociation is calculated for the weak electrolyte.
Complete Step by step answer:The formula which relates the degree of dissociation with dissociation constant is as follows:
${K_a} = \,\dfrac{{C{\alpha ^2}}}{{1 - \alpha }}$
Where,
${K_a}$ is the acid dissociation constant.
$\,C$ is the concentration.
$\alpha $ is the degree of dissociation
Mostly weak electrolyte dissociates very less so, for weak electrolyte the degree of dissociation is very-very less than one,$\alpha < < 1$ so, the value of $1 - \alpha $ can be taken to equal to$1$so, the formula of the dissociation constant can be reduced as, ${K_a} = \,C{\alpha ^2}$.
Rearrange the formula for degree of dissociation as follows:
\[{\alpha ^2} = \dfrac{{{{\text{K}}_{\text{a}}}}}{{\text{C}}}\]
\[\Rightarrow \alpha = \sqrt {\dfrac{{{K_a}}}{C}} \]
Substitute $0.1\,{\text{mol}}\,\,{{\text{L}}^{ - 1}}$for the concentration and ${10^{ - 5}}$ for dissociation constant.
\[\alpha = \sqrt {\dfrac{{{{10}^{ - 5}}}}{{0.1}}} \]
\[\Rightarrow \alpha = \sqrt {1\, \times {{10}^{ - 4}}} \]
$\Rightarrow \alpha = \,0.01$
So, the degree of dissociation for acetic acid in water is $\,0.01$.
Therefore, option (A) $\,0.01$, is correct.
Note: The degree of dissociation tells the dissociated amount of the weak electrolyte. The strong electrolyte dissociates completely, so it is not calculated for the strong electrolyte. A similar formula is used for the determination of the degree of dissociation for a weak base only the ${{\text{K}}_{\text{a}}}$ is replaced with ${{\text{K}}_{\text{b}}}$ where, ${{\text{K}}_{\text{b}}}$ is the base dissociation constant. The degree of dissociation can also be calculated by using equivalent conductance at a concentration and equivalent conductance at infinite dilution. The formula to calculate the degree of dissociation is $\alpha = \,\dfrac{{{\lambda _m}}}{{\lambda _m^ \circ }}$. Where, ${\lambda _m}$is the equivalent conductance at a concentration and $\lambda _m^ \circ $is the equivalent conductance at infinite dilution.
Complete Step by step answer:The formula which relates the degree of dissociation with dissociation constant is as follows:
${K_a} = \,\dfrac{{C{\alpha ^2}}}{{1 - \alpha }}$
Where,
${K_a}$ is the acid dissociation constant.
$\,C$ is the concentration.
$\alpha $ is the degree of dissociation
Mostly weak electrolyte dissociates very less so, for weak electrolyte the degree of dissociation is very-very less than one,$\alpha < < 1$ so, the value of $1 - \alpha $ can be taken to equal to$1$so, the formula of the dissociation constant can be reduced as, ${K_a} = \,C{\alpha ^2}$.
Rearrange the formula for degree of dissociation as follows:
\[{\alpha ^2} = \dfrac{{{{\text{K}}_{\text{a}}}}}{{\text{C}}}\]
\[\Rightarrow \alpha = \sqrt {\dfrac{{{K_a}}}{C}} \]
Substitute $0.1\,{\text{mol}}\,\,{{\text{L}}^{ - 1}}$for the concentration and ${10^{ - 5}}$ for dissociation constant.
\[\alpha = \sqrt {\dfrac{{{{10}^{ - 5}}}}{{0.1}}} \]
\[\Rightarrow \alpha = \sqrt {1\, \times {{10}^{ - 4}}} \]
$\Rightarrow \alpha = \,0.01$
So, the degree of dissociation for acetic acid in water is $\,0.01$.
Therefore, option (A) $\,0.01$, is correct.
Note: The degree of dissociation tells the dissociated amount of the weak electrolyte. The strong electrolyte dissociates completely, so it is not calculated for the strong electrolyte. A similar formula is used for the determination of the degree of dissociation for a weak base only the ${{\text{K}}_{\text{a}}}$ is replaced with ${{\text{K}}_{\text{b}}}$ where, ${{\text{K}}_{\text{b}}}$ is the base dissociation constant. The degree of dissociation can also be calculated by using equivalent conductance at a concentration and equivalent conductance at infinite dilution. The formula to calculate the degree of dissociation is $\alpha = \,\dfrac{{{\lambda _m}}}{{\lambda _m^ \circ }}$. Where, ${\lambda _m}$is the equivalent conductance at a concentration and $\lambda _m^ \circ $is the equivalent conductance at infinite dilution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers