Answer
Verified
397.8k+ views
Hint: As we know that a trapezium is a quadrilateral having two parallel sides of unequal length and the other two sides are non- parallel. The parallel sides of a trapezium are called bases and the non parallel sides are called the legs. The area of the trapezium is $ \dfrac{1}{2} \times $ ( Sum of parallel sides) $ \times $ ( Distance between them).
Complete step by step solution:
First we will draw the diagram according to the questions:
In the above figure we can see that $ AB = 4 + \sqrt 5 $ and $ DC = 2 + x $ . The triangle $ ADX $ is a right angled triangle, so to find the value of AX we will apply the Pythagoras theorem.
We have $ AX = \sqrt {A{D^2} - D{X^2}} $ , by putting the values in the expression we have
$
AX = \sqrt {{7^2} - {2^2}} \\
\Rightarrow \sqrt {49 - 4} \;
$ .
It gives us the value $ AX = \sqrt {45} = 3\sqrt {5.} $
We have been given that the area of the trapezium is $ 15(15 + \sqrt 2 )c{m^2}. $ Now the area of the trapezium is $ \dfrac{1}{2} \times $ ( Sum of parallel sides) $ \times $ ( Distance between them).
So we can write
$ 15(\sqrt 5 + 2) = \dfrac{1}{2} \times \left( {4 + \sqrt 5 + 2 + x} \right) \times 3\sqrt 5 $ .
We will solve it now by isolating the term $ x $ .
Therefore: $ \left( {6 + \sqrt 5 + x} \right)3\sqrt 5 = 2 \times 15\left( {\sqrt 5 + 2} \right) $ . Now we will transfer the $ 3\sqrt 5 $ to the right hand side of the equation,
$ x + 6 + \sqrt 5 = 30\dfrac{{\sqrt 5 + 2}}{{3\sqrt 5 }} $ .
Taking the common factor out $ x + 6 + \sqrt 5 = 10\left( {1 + \dfrac{2}{5}\sqrt 5 } \right) $ , transfer all the terms except the variable to the right hand side
$
x = 10 + \dfrac{{20}}{5} \times \sqrt 5 - 6 - \sqrt 5 \\
\Rightarrow 4 + 3\sqrt 5 \;
$ .
Hence the required answer is $ 4 + 3\sqrt 5 . $
So, the correct answer is “ $ 4 + 3\sqrt 5 $ ”.
Note: Before solving this kind of question we should know all the properties and the formulas of the trapezium. We should note that the question says that the AX is perpendicular so that makes the angle $ {90^ \circ } $ , hence it forms the right angled triangle. We should be careful while solving to avoid the calculation mistakes.
Complete step by step solution:
First we will draw the diagram according to the questions:
In the above figure we can see that $ AB = 4 + \sqrt 5 $ and $ DC = 2 + x $ . The triangle $ ADX $ is a right angled triangle, so to find the value of AX we will apply the Pythagoras theorem.
We have $ AX = \sqrt {A{D^2} - D{X^2}} $ , by putting the values in the expression we have
$
AX = \sqrt {{7^2} - {2^2}} \\
\Rightarrow \sqrt {49 - 4} \;
$ .
It gives us the value $ AX = \sqrt {45} = 3\sqrt {5.} $
We have been given that the area of the trapezium is $ 15(15 + \sqrt 2 )c{m^2}. $ Now the area of the trapezium is $ \dfrac{1}{2} \times $ ( Sum of parallel sides) $ \times $ ( Distance between them).
So we can write
$ 15(\sqrt 5 + 2) = \dfrac{1}{2} \times \left( {4 + \sqrt 5 + 2 + x} \right) \times 3\sqrt 5 $ .
We will solve it now by isolating the term $ x $ .
Therefore: $ \left( {6 + \sqrt 5 + x} \right)3\sqrt 5 = 2 \times 15\left( {\sqrt 5 + 2} \right) $ . Now we will transfer the $ 3\sqrt 5 $ to the right hand side of the equation,
$ x + 6 + \sqrt 5 = 30\dfrac{{\sqrt 5 + 2}}{{3\sqrt 5 }} $ .
Taking the common factor out $ x + 6 + \sqrt 5 = 10\left( {1 + \dfrac{2}{5}\sqrt 5 } \right) $ , transfer all the terms except the variable to the right hand side
$
x = 10 + \dfrac{{20}}{5} \times \sqrt 5 - 6 - \sqrt 5 \\
\Rightarrow 4 + 3\sqrt 5 \;
$ .
Hence the required answer is $ 4 + 3\sqrt 5 . $
So, the correct answer is “ $ 4 + 3\sqrt 5 $ ”.
Note: Before solving this kind of question we should know all the properties and the formulas of the trapezium. We should note that the question says that the AX is perpendicular so that makes the angle $ {90^ \circ } $ , hence it forms the right angled triangle. We should be careful while solving to avoid the calculation mistakes.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE