Answer
Verified
429.3k+ views
Hint: To get the length of the converted wire can be calculated by equating the volume of sphere and the cylinder (wire). Here the volume of sphere and wire will be same because all the material of the sphere is converted into wire.
Complete step-by-step answer:
Given the diameter of the sphere is 6 cm
As shown in the diagram below AB is the diameter of the sphere having center O
So its radius $ = \dfrac{6}{2} = 3 $ cm
We know the volume of a sphere $ = \dfrac{4}{3}\pi {r^3} $
On putting the value of the radius of the sphere
We get,
Volume of sphere $ = \dfrac{4}{3}\pi {(3)^3} $ cm
Similarly we know the volume of cylinder $ = \pi {r^2}h $
Here the converted wire can be treated like cylinder
Suppose the length of the wire is h cm
And the diameter of the wire is given which is 2mm
So the radius of the wire $ = \dfrac{2}{2} = 1 $ mm or 0.1cm
Then the volume of wire $ = \pi {(0.1)^2}h $
Now we know that the volume of wire and the sphere will be same
That means
$ 4{(3)^2} \pi= \pi {(0.1)^2}h $
On cancelling out the pie from each side we get,
$ 4{(3)^2} = {(0.1)^2}h $
On simplifying we get
The value of $ h = 3600 $ cm
On converting cm to m
We get h=36 m.
Hence the length of the wire is 36 m
So, the correct answer is “36 m”.
Note: In this problem to find the volume of wire we have used the volume formula of the cylinder because the wire is treated as a cylinder. Whose length can be assumed as the height of the cylinder.
Complete step-by-step answer:
Given the diameter of the sphere is 6 cm
As shown in the diagram below AB is the diameter of the sphere having center O
So its radius $ = \dfrac{6}{2} = 3 $ cm
We know the volume of a sphere $ = \dfrac{4}{3}\pi {r^3} $
On putting the value of the radius of the sphere
We get,
Volume of sphere $ = \dfrac{4}{3}\pi {(3)^3} $ cm
Similarly we know the volume of cylinder $ = \pi {r^2}h $
Here the converted wire can be treated like cylinder
Suppose the length of the wire is h cm
And the diameter of the wire is given which is 2mm
So the radius of the wire $ = \dfrac{2}{2} = 1 $ mm or 0.1cm
Then the volume of wire $ = \pi {(0.1)^2}h $
Now we know that the volume of wire and the sphere will be same
That means
$ 4{(3)^2} \pi= \pi {(0.1)^2}h $
On cancelling out the pie from each side we get,
$ 4{(3)^2} = {(0.1)^2}h $
On simplifying we get
The value of $ h = 3600 $ cm
On converting cm to m
We get h=36 m.
Hence the length of the wire is 36 m
So, the correct answer is “36 m”.
Note: In this problem to find the volume of wire we have used the volume formula of the cylinder because the wire is treated as a cylinder. Whose length can be assumed as the height of the cylinder.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE