Answer
Verified
468.9k+ views
Hint: Start by finding the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ using the chain rule. We know that $ \dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x $ and $ \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}} $ . Once you get the derivative report the coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ as your answer. You may have to use the identity $ \tan \left( {{\tan }^{-1}}x \right)=x $ for simplification of your answer.
Complete step-by-step answer:
Let us start with finding the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ . For finding the derivative, we will use the chain rule of differentiation. According to the chain rule of differentiation, we know $ \dfrac{d\left( f\left( g(x) \right) \right)}{dx}=f'\left( g(x) \right)\times g'(x) $ . For $ \sec \left( {{\tan }^{-1}}x \right) $ , $ f\left( x \right)=\sec x $ and $ g(x)={{\tan }^{-1}}x $ .
We also know that $ \dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x $ . .
$ \therefore \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} $
Now, we know that $ {{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}} $ . So, if we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} $
Now, according to the rules of inverse trigonometric function, we know $ \tan \left( {{\tan }^{-1}}x \right)=x $ . If we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times x\times \dfrac{1}{1+{{x}^{2}}} $
$ \Rightarrow \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times \dfrac{x}{1+{{x}^{2}}} $
Now, we are asked the differential coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ . So, from the above result, we can clearly see that the coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ in the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ is $ \dfrac{x}{1+{{x}^{2}}} $ .
So, the correct answer is “Option A”.
Note: The first thing to keep in mind is that according to the rule of trigonometric inverse functions, $ \tan \left( {{\tan }^{-1}}x \right)=x $ , but $ {{\tan }^{-1}}\left( \tan x \right)=x $ if and only if it is mentioned that $ x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ . The other thing to keep in mind is while you report the answers, report the exact matched option, as the options given are very similar and misleading.
Complete step-by-step answer:
Let us start with finding the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ . For finding the derivative, we will use the chain rule of differentiation. According to the chain rule of differentiation, we know $ \dfrac{d\left( f\left( g(x) \right) \right)}{dx}=f'\left( g(x) \right)\times g'(x) $ . For $ \sec \left( {{\tan }^{-1}}x \right) $ , $ f\left( x \right)=\sec x $ and $ g(x)={{\tan }^{-1}}x $ .
We also know that $ \dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x $ . .
$ \therefore \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} $
Now, we know that $ {{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}} $ . So, if we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} $
Now, according to the rules of inverse trigonometric function, we know $ \tan \left( {{\tan }^{-1}}x \right)=x $ . If we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times x\times \dfrac{1}{1+{{x}^{2}}} $
$ \Rightarrow \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times \dfrac{x}{1+{{x}^{2}}} $
Now, we are asked the differential coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ . So, from the above result, we can clearly see that the coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ in the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ is $ \dfrac{x}{1+{{x}^{2}}} $ .
So, the correct answer is “Option A”.
Note: The first thing to keep in mind is that according to the rule of trigonometric inverse functions, $ \tan \left( {{\tan }^{-1}}x \right)=x $ , but $ {{\tan }^{-1}}\left( \tan x \right)=x $ if and only if it is mentioned that $ x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ . The other thing to keep in mind is while you report the answers, report the exact matched option, as the options given are very similar and misleading.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE