The differential coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ is:
(a) $ \dfrac{x}{1+{{x}^{2}}} $
(b) $ x\sqrt{1+{{x}^{2}}} $
(c) $ \dfrac{1}{\sqrt{1+{{x}^{2}}}} $
(d) $ \dfrac{x}{\sqrt{1+{{x}^{2}}}} $
Answer
Verified
482.4k+ views
Hint: Start by finding the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ using the chain rule. We know that $ \dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x $ and $ \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}} $ . Once you get the derivative report the coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ as your answer. You may have to use the identity $ \tan \left( {{\tan }^{-1}}x \right)=x $ for simplification of your answer.
Complete step-by-step answer:
Let us start with finding the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ . For finding the derivative, we will use the chain rule of differentiation. According to the chain rule of differentiation, we know $ \dfrac{d\left( f\left( g(x) \right) \right)}{dx}=f'\left( g(x) \right)\times g'(x) $ . For $ \sec \left( {{\tan }^{-1}}x \right) $ , $ f\left( x \right)=\sec x $ and $ g(x)={{\tan }^{-1}}x $ .
We also know that $ \dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x $ . .
$ \therefore \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} $
Now, we know that $ {{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}} $ . So, if we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} $
Now, according to the rules of inverse trigonometric function, we know $ \tan \left( {{\tan }^{-1}}x \right)=x $ . If we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times x\times \dfrac{1}{1+{{x}^{2}}} $
$ \Rightarrow \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times \dfrac{x}{1+{{x}^{2}}} $
Now, we are asked the differential coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ . So, from the above result, we can clearly see that the coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ in the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ is $ \dfrac{x}{1+{{x}^{2}}} $ .
So, the correct answer is “Option A”.
Note: The first thing to keep in mind is that according to the rule of trigonometric inverse functions, $ \tan \left( {{\tan }^{-1}}x \right)=x $ , but $ {{\tan }^{-1}}\left( \tan x \right)=x $ if and only if it is mentioned that $ x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ . The other thing to keep in mind is while you report the answers, report the exact matched option, as the options given are very similar and misleading.
Complete step-by-step answer:
Let us start with finding the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ . For finding the derivative, we will use the chain rule of differentiation. According to the chain rule of differentiation, we know $ \dfrac{d\left( f\left( g(x) \right) \right)}{dx}=f'\left( g(x) \right)\times g'(x) $ . For $ \sec \left( {{\tan }^{-1}}x \right) $ , $ f\left( x \right)=\sec x $ and $ g(x)={{\tan }^{-1}}x $ .
We also know that $ \dfrac{d\left( \sec x \right)}{dx}=\sec x\tan x $ . .
$ \therefore \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} $
Now, we know that $ {{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}} $ . So, if we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\tan \left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} $
Now, according to the rules of inverse trigonometric function, we know $ \tan \left( {{\tan }^{-1}}x \right)=x $ . If we use this in our equation, we get
$ \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times x\times \dfrac{1}{1+{{x}^{2}}} $
$ \Rightarrow \dfrac{d\left( \sec \left( {{\tan }^{-1}}x \right) \right)}{dx}=\sec \left( {{\tan }^{-1}}x \right)\times \dfrac{x}{1+{{x}^{2}}} $
Now, we are asked the differential coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ . So, from the above result, we can clearly see that the coefficient of $ \sec \left( {{\tan }^{-1}}x \right) $ in the derivative of $ \sec \left( {{\tan }^{-1}}x \right) $ is $ \dfrac{x}{1+{{x}^{2}}} $ .
So, the correct answer is “Option A”.
Note: The first thing to keep in mind is that according to the rule of trigonometric inverse functions, $ \tan \left( {{\tan }^{-1}}x \right)=x $ , but $ {{\tan }^{-1}}\left( \tan x \right)=x $ if and only if it is mentioned that $ x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ . The other thing to keep in mind is while you report the answers, report the exact matched option, as the options given are very similar and misleading.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE