The distance of the point (3, 5) from the line \[2x + 3y - 14 = 0\] measured parallel to $x - 2y = 1$.
$
\left( a \right)\dfrac{7}{{\sqrt 5 }} \\
\left( b \right)\dfrac{7}{{\sqrt {13} }} \\
\left( c \right)\sqrt 5 \\
\left( d \right)\sqrt {13} \\
$
Answer
Verified
510k+ views
Hint: In this question, we use the parametric equation of straight line. Parametric form of the equation of a straight line: $\dfrac{{x - {x_1}}}{{\cos \theta }} = \dfrac{{y - {y_1}}}{{\sin \theta }} = r$ , where r is the distance between two points and $\theta $ is angle made by straight line with positive x-axis.
Complete step-by-step answer:
First we find slope of line passing through the point (3, 5) and parallel to $x - 2y = 1$
We know all parallel lines have the same slope so the slope of the line is $\dfrac{1}{2}$ .
Now, we can write as $\tan \theta = \dfrac{1}{2}$ .
We can find value of $\cos \theta $ and $\sin \theta $
$ \Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }},\sin \theta = \dfrac{1}{{\sqrt 5 }}$
Let r be the required distance. Then the equation of line passing through (3,5) and parallel to $x - 2y = 1$.
Using a parametric equation of straight line .
$
\dfrac{{x - {x_1}}}{{\cos \theta }} = \dfrac{{y - {y_1}}}{{\sin \theta }} = r \\
\Rightarrow \dfrac{{x - 3}}{{\cos \theta }} = \dfrac{{y - 5}}{{\sin \theta }} = r \\
\Rightarrow x = 3 + r\cos \theta ,y = 5 + r\sin \theta \\
$
Since this point lies on the line 2x+3y−14=0 and also satisfies this line.
$ \Rightarrow 2\left( {3 + r\cos \theta } \right) + 3\left( {5 + r\sin \theta } \right) - 14 = 0$
Put the value of $\cos \theta $ and $\sin \theta $ .
$
\Rightarrow 2\left( {3 + \dfrac{{2r}}{{\sqrt 5 }}} \right) + 3\left( {5 + \dfrac{r}{{\sqrt 5 }}} \right) - 14 = 0 \\
\Rightarrow 6 + \dfrac{{4r}}{{\sqrt 5 }} + 15 + \dfrac{{3r}}{{\sqrt 5 }} - 14 = 0 \\
\Rightarrow 7 + \dfrac{{7r}}{{\sqrt 5 }} = 0 \\
\Rightarrow r = - \sqrt 5 \\
$
Required distance is $\sqrt 5 $ and negative signs represent only direction.
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. Like we find an equation of line passing through a point and parallel to other lines by using a parametric form of straight line then after use given line we can get the required answer.
Complete step-by-step answer:
First we find slope of line passing through the point (3, 5) and parallel to $x - 2y = 1$
We know all parallel lines have the same slope so the slope of the line is $\dfrac{1}{2}$ .
Now, we can write as $\tan \theta = \dfrac{1}{2}$ .
We can find value of $\cos \theta $ and $\sin \theta $
$ \Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }},\sin \theta = \dfrac{1}{{\sqrt 5 }}$
Let r be the required distance. Then the equation of line passing through (3,5) and parallel to $x - 2y = 1$.
Using a parametric equation of straight line .
$
\dfrac{{x - {x_1}}}{{\cos \theta }} = \dfrac{{y - {y_1}}}{{\sin \theta }} = r \\
\Rightarrow \dfrac{{x - 3}}{{\cos \theta }} = \dfrac{{y - 5}}{{\sin \theta }} = r \\
\Rightarrow x = 3 + r\cos \theta ,y = 5 + r\sin \theta \\
$
Since this point lies on the line 2x+3y−14=0 and also satisfies this line.
$ \Rightarrow 2\left( {3 + r\cos \theta } \right) + 3\left( {5 + r\sin \theta } \right) - 14 = 0$
Put the value of $\cos \theta $ and $\sin \theta $ .
$
\Rightarrow 2\left( {3 + \dfrac{{2r}}{{\sqrt 5 }}} \right) + 3\left( {5 + \dfrac{r}{{\sqrt 5 }}} \right) - 14 = 0 \\
\Rightarrow 6 + \dfrac{{4r}}{{\sqrt 5 }} + 15 + \dfrac{{3r}}{{\sqrt 5 }} - 14 = 0 \\
\Rightarrow 7 + \dfrac{{7r}}{{\sqrt 5 }} = 0 \\
\Rightarrow r = - \sqrt 5 \\
$
Required distance is $\sqrt 5 $ and negative signs represent only direction.
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. Like we find an equation of line passing through a point and parallel to other lines by using a parametric form of straight line then after use given line we can get the required answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE