Answer
Verified
441.3k+ views
Hint: Applying electrified formulas use the given thing , applying integration for both sides there we easily get ${V_1} - {V_2}$ value by putting the values of A and B. In the electrodynamic chapter we have seen questions like this. In this question we ask the potential difference its unit is V.
Formula used:
$dV = - \vec E.d\vec r$
Complete Step by step solution:
$dV = - \vec E.d\vec r$
First we have to write given values
$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}\to
{\vec E} = \left( {Ax + B} \right)\hat i$
Constant values are A=20 SI unit and B=10 SI unit. If the potential at x=1 is ${V_2}$ and that at x=−5 is ${V_2}$ , then ${V_1} - {V_2}$ is
$\eqalign{
& \int\limits_{{v_2}}^{{v_1}} {dV = \int\limits_{ - 5}^1 { - \left( {Ax + B} \right)dx} } \cr
& {v_1} - {v_2} = {\left( { - A\dfrac{{{x^2}}}{2} - Bx} \right)^1}_{ - 5} \cr} $
By simplification we get
$\eqalign{
& \Rightarrow {v_1} - {v_2} = \left( { - \dfrac{A}{2} - B} \right) + \left( {\dfrac{A}{2}25 + B( - 5)} \right) \cr
& \Rightarrow {v_1} - {v_2} = 12A - 6B \cr
& \Rightarrow {v_1} - {v_2} = 240 - 60 \cr
& \therefore {v_1} - {v_2} = 180V \cr} $
Hence, the correct option C.
Additional information:
The negative sign of $dV = - \vec E.d\vec r$this formula shows the direction of E, it is in the direction in which V decreases.
In other words we can say electric field points in the opposite direction to the voltage drop. And it is quite obvious because as you are going in the direction of the electric field you are in a way moving towards negative charges so electric potential is bound to decrease.
We have to practice the derivation of this formula. Then we get a strong hold on to use this formula.
Here we dr is the component of dr in the direction $\hat i$ dr can be either positive or negative depending on which way the external force is displaced. Once this expression becomes an integral then the sign of dr is determined by the limits of integration as we can see here.
Note:
If intensity of electric field is non uniform with respect to distance 'r' , over a given space, we have to use this formula for small segments in which considering uniformity of electric field intensity in that segment. And here we have to remember the negative sign of this formula.
Formula used:
$dV = - \vec E.d\vec r$
Complete Step by step solution:
$dV = - \vec E.d\vec r$
First we have to write given values
$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}\to
{\vec E} = \left( {Ax + B} \right)\hat i$
Constant values are A=20 SI unit and B=10 SI unit. If the potential at x=1 is ${V_2}$ and that at x=−5 is ${V_2}$ , then ${V_1} - {V_2}$ is
$\eqalign{
& \int\limits_{{v_2}}^{{v_1}} {dV = \int\limits_{ - 5}^1 { - \left( {Ax + B} \right)dx} } \cr
& {v_1} - {v_2} = {\left( { - A\dfrac{{{x^2}}}{2} - Bx} \right)^1}_{ - 5} \cr} $
By simplification we get
$\eqalign{
& \Rightarrow {v_1} - {v_2} = \left( { - \dfrac{A}{2} - B} \right) + \left( {\dfrac{A}{2}25 + B( - 5)} \right) \cr
& \Rightarrow {v_1} - {v_2} = 12A - 6B \cr
& \Rightarrow {v_1} - {v_2} = 240 - 60 \cr
& \therefore {v_1} - {v_2} = 180V \cr} $
Hence, the correct option C.
Additional information:
The negative sign of $dV = - \vec E.d\vec r$this formula shows the direction of E, it is in the direction in which V decreases.
In other words we can say electric field points in the opposite direction to the voltage drop. And it is quite obvious because as you are going in the direction of the electric field you are in a way moving towards negative charges so electric potential is bound to decrease.
We have to practice the derivation of this formula. Then we get a strong hold on to use this formula.
Here we dr is the component of dr in the direction $\hat i$ dr can be either positive or negative depending on which way the external force is displaced. Once this expression becomes an integral then the sign of dr is determined by the limits of integration as we can see here.
Note:
If intensity of electric field is non uniform with respect to distance 'r' , over a given space, we have to use this formula for small segments in which considering uniformity of electric field intensity in that segment. And here we have to remember the negative sign of this formula.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE