
The frequency $(n)$ of a tuning fork depends upon the length$\left( L \right)$ of its prongs, the density $\left( d \right)$ and Young’s modulus $\left( Y \right)$ of its material. It is given that $n \propto {L^a}{d^b}{Y^c}$. The values of $a$, $b$ and $c$ are:
(A) $1,\dfrac{1}{2}, - \dfrac{1}{2}$
(B) $ - 1, - \dfrac{1}{2},\dfrac{1}{2}$
(C) $\dfrac{1}{2}, - 1, - \dfrac{1}{2}$
(D) $\dfrac{1}{2}, - \dfrac{1}{2},1$
Answer
573.3k+ views
Hint To solve this question, we need to perform the dimensional analysis for the given relation between the quantities in the question. To do this, we have to consider the dimensions of the quantities on the LHS and RHS and equate separately the powers of the dimensions to get the equations corresponding to the unknown variables.
Complete step by step answer
According to the question, the frequency $(n)$ is proportional to the length $L$ raised to the power$a$, density $d$ raised to the power $b$ and the Young’s modulus $Y$ raised to the power $c$, that is,
$\Rightarrow n \propto {L^a}{d^b}{Y^c}$
Removing the proportionality sign with the constant$c$, we get
$\Rightarrow n = c\left( {{L^a}{d^b}{Y^c}} \right)$ (1)
For the above equation to be correct, the dimensions of the quantity in the LHS should be equal to the dimensions of the quantities in the RHS.
Replacing the quantities of the above equation with their dimensions, we get
$\Rightarrow \left[ n \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]$, $\left[ L \right] = \left[ {{M^0}{L^1}{T^0}} \right]$, $\left[ d \right] = \left[ {{M^1}{L^{ - 3}}{T^0}} \right]$ and $\left[ Y \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$
$\because c$is a constant, so it has no dimensions.
Substituting these in (1) we get
$\Rightarrow \left[ {{M^0}{L^0}{T^{ - 1}}} \right] = {\left[ {{M^0}{L^1}{T^0}} \right]^a}{\left[ {{M^1}{L^{ - 3}}{T^0}} \right]^b}{\left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]^c}$
$\Rightarrow \left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^0}{L^a}{T^0}} \right]\left[ {{M^b}{L^{ - 3b}}{T^0}} \right]\left[ {{M^c}{L^{ - c}}{T^{ - 2c}}} \right]$
On simplifying, we get
$\Rightarrow \left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^{b + c}}{L^{a - 3b - c}}{T^{ - 2c}}} \right]$
Comparing the exponents of similar dimensions, we get
$\Rightarrow b + c = 0$ (2)
$\Rightarrow a - 3b - c = 0$ (3)
And
$\Rightarrow - 2c = - 1$ (4)
From (4), we get $c = \dfrac{1}{2}$
Putting this in (2)
$\Rightarrow b + \dfrac{1}{2} = 0$
$\Rightarrow b = - \dfrac{1}{2}$
Putting the values of$b,c$in (3)
$\Rightarrow a + \dfrac{3}{2} - \dfrac{1}{2} = 0$
$\Rightarrow a + 1 = 0$
Finally, $a = - 1$
$\therefore a = - 1,b = - \dfrac{1}{2},c = \dfrac{1}{2}$
Putting these values in (1)
$\Rightarrow n = c\left( {{L^{ - 1}}{d^{ - \dfrac{1}{2}}}{Y^{\dfrac{1}{2}}}} \right)$
Or, $f = \dfrac{c}{L}\sqrt {\dfrac{Y}{d}} $
Therefore, the formula for the frequency of a tuning fork is
$\Rightarrow f = \dfrac{c}{L}\sqrt {\dfrac{Y}{d}} $, where $c$is a constant.
So, the values of $a$, $b$ and $c$ are $ - 1, - \dfrac{1}{2},\dfrac{1}{2}$ respectively.
Hence, the correct answer is option B.
Note
The dimensions of all the quantities of the question have been deduced using their respective fundamental formulae. We can use any formula in physics corresponding to a quantity to find out the dimension of that quantity.
Complete step by step answer
According to the question, the frequency $(n)$ is proportional to the length $L$ raised to the power$a$, density $d$ raised to the power $b$ and the Young’s modulus $Y$ raised to the power $c$, that is,
$\Rightarrow n \propto {L^a}{d^b}{Y^c}$
Removing the proportionality sign with the constant$c$, we get
$\Rightarrow n = c\left( {{L^a}{d^b}{Y^c}} \right)$ (1)
For the above equation to be correct, the dimensions of the quantity in the LHS should be equal to the dimensions of the quantities in the RHS.
Replacing the quantities of the above equation with their dimensions, we get
$\Rightarrow \left[ n \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]$, $\left[ L \right] = \left[ {{M^0}{L^1}{T^0}} \right]$, $\left[ d \right] = \left[ {{M^1}{L^{ - 3}}{T^0}} \right]$ and $\left[ Y \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$
$\because c$is a constant, so it has no dimensions.
Substituting these in (1) we get
$\Rightarrow \left[ {{M^0}{L^0}{T^{ - 1}}} \right] = {\left[ {{M^0}{L^1}{T^0}} \right]^a}{\left[ {{M^1}{L^{ - 3}}{T^0}} \right]^b}{\left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]^c}$
$\Rightarrow \left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^0}{L^a}{T^0}} \right]\left[ {{M^b}{L^{ - 3b}}{T^0}} \right]\left[ {{M^c}{L^{ - c}}{T^{ - 2c}}} \right]$
On simplifying, we get
$\Rightarrow \left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^{b + c}}{L^{a - 3b - c}}{T^{ - 2c}}} \right]$
Comparing the exponents of similar dimensions, we get
$\Rightarrow b + c = 0$ (2)
$\Rightarrow a - 3b - c = 0$ (3)
And
$\Rightarrow - 2c = - 1$ (4)
From (4), we get $c = \dfrac{1}{2}$
Putting this in (2)
$\Rightarrow b + \dfrac{1}{2} = 0$
$\Rightarrow b = - \dfrac{1}{2}$
Putting the values of$b,c$in (3)
$\Rightarrow a + \dfrac{3}{2} - \dfrac{1}{2} = 0$
$\Rightarrow a + 1 = 0$
Finally, $a = - 1$
$\therefore a = - 1,b = - \dfrac{1}{2},c = \dfrac{1}{2}$
Putting these values in (1)
$\Rightarrow n = c\left( {{L^{ - 1}}{d^{ - \dfrac{1}{2}}}{Y^{\dfrac{1}{2}}}} \right)$
Or, $f = \dfrac{c}{L}\sqrt {\dfrac{Y}{d}} $
Therefore, the formula for the frequency of a tuning fork is
$\Rightarrow f = \dfrac{c}{L}\sqrt {\dfrac{Y}{d}} $, where $c$is a constant.
So, the values of $a$, $b$ and $c$ are $ - 1, - \dfrac{1}{2},\dfrac{1}{2}$ respectively.
Hence, the correct answer is option B.
Note
The dimensions of all the quantities of the question have been deduced using their respective fundamental formulae. We can use any formula in physics corresponding to a quantity to find out the dimension of that quantity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

