Answer
Verified
406.3k+ views
Hint: The half life period of any reaction can be understood as the time that is needed for the concentration of the reactants to be reduced to exactly half of the original value of their concentrations.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
\[\dfrac{{d[A]}}{{dt}} = - k{[A]^2}\]
This equation can be simplified further and be represented as follows:
\[\dfrac{1}{{[A]}} = \dfrac{1}{{{{[A]}_0}}} + kt\]
\[\dfrac{1}{{[A]}} - \dfrac{1}{{{{[A]}_0}}} = kt\]
Now, since \[{[A]_{{t_{1/2}}}} = \dfrac{1}{2}{[A]_0}\];
When \[t = {t_{1/2}}\], the given simplified rate equation transforms to:
\\[\dfrac{1}{{\dfrac{1}{2}{{[A]}_0}}} - \dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
Hence,
\[\dfrac{{2 - 1}}{{{{[A]}_0}}} = k{t_{1/2}}\]
\[\dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
\[\dfrac{{d[A]}}{{dt}} = - k{[A]^2}\]
This equation can be simplified further and be represented as follows:
\[\dfrac{1}{{[A]}} = \dfrac{1}{{{{[A]}_0}}} + kt\]
\[\dfrac{1}{{[A]}} - \dfrac{1}{{{{[A]}_0}}} = kt\]
Now, since \[{[A]_{{t_{1/2}}}} = \dfrac{1}{2}{[A]_0}\];
When \[t = {t_{1/2}}\], the given simplified rate equation transforms to:
\\[\dfrac{1}{{\dfrac{1}{2}{{[A]}_0}}} - \dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
Hence,
\[\dfrac{{2 - 1}}{{{{[A]}_0}}} = k{t_{1/2}}\]
\[\dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main