
The half-life period of a second order reaction is:
(A) Proportional to the initial concentration of reactants
(B) Independent of the initial concentration of reactants
(C) Inversely proportional to the initial concentration of reactants
(D) Inversely proportional to the square of initial concentration of the reactants
Answer
514k+ views
Hint: The half life period of any reaction can be understood as the time that is needed for the concentration of the reactants to be reduced to exactly half of the original value of their concentrations.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
\[\dfrac{{d[A]}}{{dt}} = - k{[A]^2}\]
This equation can be simplified further and be represented as follows:
\[\dfrac{1}{{[A]}} = \dfrac{1}{{{{[A]}_0}}} + kt\]
\[\dfrac{1}{{[A]}} - \dfrac{1}{{{{[A]}_0}}} = kt\]
Now, since \[{[A]_{{t_{1/2}}}} = \dfrac{1}{2}{[A]_0}\];
When \[t = {t_{1/2}}\], the given simplified rate equation transforms to:
\\[\dfrac{1}{{\dfrac{1}{2}{{[A]}_0}}} - \dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
Hence,
\[\dfrac{{2 - 1}}{{{{[A]}_0}}} = k{t_{1/2}}\]
\[\dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
\[\dfrac{{d[A]}}{{dt}} = - k{[A]^2}\]
This equation can be simplified further and be represented as follows:
\[\dfrac{1}{{[A]}} = \dfrac{1}{{{{[A]}_0}}} + kt\]
\[\dfrac{1}{{[A]}} - \dfrac{1}{{{{[A]}_0}}} = kt\]
Now, since \[{[A]_{{t_{1/2}}}} = \dfrac{1}{2}{[A]_0}\];
When \[t = {t_{1/2}}\], the given simplified rate equation transforms to:
\\[\dfrac{1}{{\dfrac{1}{2}{{[A]}_0}}} - \dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
Hence,
\[\dfrac{{2 - 1}}{{{{[A]}_0}}} = k{t_{1/2}}\]
\[\dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

