Answer
Verified
429k+ views
Hint:Half-life and initial pressure of a reaction have an inverse relationship. Hence we can find out the order of reaction by substitution on the corresponding equation while taking all other terms as constant.
Complete step by step answer:Given in the first case,
Initial pressure, ${\left( {{P_0}} \right)_1} = 50$ mm
Half-life, \[{\left( {{t_{0.5}}} \right)_1} = 4\] hours
In the second case,
Initial pressure, ${\left( {{P_0}} \right)_2} = 100$ mm
Half-life, \[{\left( {{t_{0.5}}} \right)_2} = 2\] hours
For a reaction having order n, the relation between half-life and initial pressure is given by,
${t_{0.5}} = \dfrac{{{2^{n - 1}} - 1}}{{(n - 1)k{P_0}^{n - 1}}}$
Where k is rate constant, n is order of reaction and ${P_0}$is the initial pressure.
For a particular reaction, rate constant and rate of reaction are constant. Hence we can write,
${t_{0.5}} \propto \dfrac{1}{{{P_0}^{n - 1}}}$.
i.e. half-life and initial concentration are inversely proportional to each other.
Hence in this condition, we can write,
$\dfrac{{{{\left( {{t_{0.5}}} \right)}_1}}}{{{{\left( {{t_{0.5}}} \right)}_2}}} = \dfrac{{{{\left( {{P_0}^{n - 1}} \right)}_2}}}{{{{\left( {{P_0}^{n - 1}} \right)}_1}}} = {\left( {\dfrac{{{{\left( {{P_0}} \right)}_2}}}{{{{\left( {{P_0}} \right)}_1}}}} \right)^{n - 1}}$
The only unknown in this equation is order of reaction, n. Hence by substituting the given values we can find out the order of reaction.
Let us substitute the values.
\[\dfrac{4}{2} = {\left( {\dfrac{{100}}{{50}}} \right)^{n - 1}}\]
\[2 = {2^{n - 1}}\]
Which means that n $ = 2$.
Hence the order of the reaction is $2$.
Therefore, the correct option is C.
Additional information:
Order of a reaction is the sum of powers of concentration terms of reactants in the rate equation. Since the order for catalytic decomposition of $A{B_3}$ is calculated as two, rate law for the corresponding reaction will be,
$r = k{\left[ {A{B_3}} \right]^2}$
Where r is the rate of catalytic decomposition of $A{B_3}$.
Note:
In this problem, we are taking the ratio of values. The units get cancelled each other. Hence we do not need to concentrate on the units of values. Otherwise we should be aware of the units and should convert it into required values if necessary.
Complete step by step answer:Given in the first case,
Initial pressure, ${\left( {{P_0}} \right)_1} = 50$ mm
Half-life, \[{\left( {{t_{0.5}}} \right)_1} = 4\] hours
In the second case,
Initial pressure, ${\left( {{P_0}} \right)_2} = 100$ mm
Half-life, \[{\left( {{t_{0.5}}} \right)_2} = 2\] hours
For a reaction having order n, the relation between half-life and initial pressure is given by,
${t_{0.5}} = \dfrac{{{2^{n - 1}} - 1}}{{(n - 1)k{P_0}^{n - 1}}}$
Where k is rate constant, n is order of reaction and ${P_0}$is the initial pressure.
For a particular reaction, rate constant and rate of reaction are constant. Hence we can write,
${t_{0.5}} \propto \dfrac{1}{{{P_0}^{n - 1}}}$.
i.e. half-life and initial concentration are inversely proportional to each other.
Hence in this condition, we can write,
$\dfrac{{{{\left( {{t_{0.5}}} \right)}_1}}}{{{{\left( {{t_{0.5}}} \right)}_2}}} = \dfrac{{{{\left( {{P_0}^{n - 1}} \right)}_2}}}{{{{\left( {{P_0}^{n - 1}} \right)}_1}}} = {\left( {\dfrac{{{{\left( {{P_0}} \right)}_2}}}{{{{\left( {{P_0}} \right)}_1}}}} \right)^{n - 1}}$
The only unknown in this equation is order of reaction, n. Hence by substituting the given values we can find out the order of reaction.
Let us substitute the values.
\[\dfrac{4}{2} = {\left( {\dfrac{{100}}{{50}}} \right)^{n - 1}}\]
\[2 = {2^{n - 1}}\]
Which means that n $ = 2$.
Hence the order of the reaction is $2$.
Therefore, the correct option is C.
Additional information:
Order of a reaction is the sum of powers of concentration terms of reactants in the rate equation. Since the order for catalytic decomposition of $A{B_3}$ is calculated as two, rate law for the corresponding reaction will be,
$r = k{\left[ {A{B_3}} \right]^2}$
Where r is the rate of catalytic decomposition of $A{B_3}$.
Note:
In this problem, we are taking the ratio of values. The units get cancelled each other. Hence we do not need to concentrate on the units of values. Otherwise we should be aware of the units and should convert it into required values if necessary.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE