
The inradius of a regular tetrahedron of side length a is
A. $ \sqrt {\dfrac{2}{3}a} $
B. $ \sqrt {\dfrac{3}{2}a} $
C. $ \dfrac{a}{{\sqrt 6 }} $
D. $ \dfrac{a}{{2\sqrt 6 }} $
Answer
465.9k+ views
Hint: In the problem they have asked to find the inradius of a regular tetrahedron. Let the side length of a tetrahedron be $ a $ , and let its base lie in the plane $ z = 0 $ with one vertex lying along the positive $ x $ axis. Thereafter, assuming the inradius and the circumference to be $ r $ and $ R $ respectively.
Complete step-by-step answer:
ording to the given information, we have,
Side length of a tetrahedron is $ a $ .
Let its base lie in the plane $ z = 0 $ with one vertex lying along the positive $ x $ axis. Assuming the inradius and the circumference to be $ r $ and $ R $ respectively and also the height and area to be $ h $ and $ A $ respectively.
Then the polyhedron vertices of this tetrahedron are located at ( $ x,0,0 $ ), ( $ - d, \pm \dfrac{a}{2},0 $ ), and ( $ 0,0,h $ ), where,
\[ \Rightarrow x = \dfrac{{\dfrac{a}{2}}}{{\cos (\dfrac{\pi }{6})}}\] $ = \dfrac{1}{3}\sqrt {3}a $
Thereafter on simplifying ‘ $ d $ ’ we get,
$ \Rightarrow d = \sqrt {{x^2} - {{(\dfrac{1}{2}a)}^2}} $ $ = \dfrac{1}{6}\sqrt {3}a $
This further gives the area of the base as,
$ \Rightarrow A = \dfrac{1}{2}a(R + x) $ $ = \dfrac{1}{4}\sqrt 3 {a^2} $
Therefore we get the height of the tetrahedron to be,
\[ \Rightarrow h = \sqrt {{a^2} - {x^2}} \] $ = \dfrac{1}{3}\sqrt 6 a $
Further, the circumference of the tetrahedron is calculated from,
$ {x^2} + {(h - R)^2} = {R^2} $
$ {x^2} + {h^2} - 2hR + {R^2} = {R^2} $
Now on substituting the values already calculated in the above given equation we get,
$ \Rightarrow R = \dfrac{{{x^2} + {h^2}}}{{2h}} $
$ \Rightarrow \dfrac{1}{4}\sqrt 6 a $
Finally, we calculate the inradius $ r $ from,
$ r = h - R $
$ \Rightarrow \dfrac{1}{{12}}\sqrt 6 a $ $ = \dfrac{a}{{2\sqrt 6 }} $
So, the correct answer is “Option D”.
Note: Tetrahedron is the simplest of the entire ordinary convex polygon and the only one which has fewer than five faces (four faces). The tetrahedron has 7 axes of symmetry: $ ^4{C_3} $ (axes connecting vertices with the centers of the opposite faces) and $ ^3{C_2} $ (the axes connecting the midpoints of opposite sides).
Complete step-by-step answer:

ording to the given information, we have,
Side length of a tetrahedron is $ a $ .
Let its base lie in the plane $ z = 0 $ with one vertex lying along the positive $ x $ axis. Assuming the inradius and the circumference to be $ r $ and $ R $ respectively and also the height and area to be $ h $ and $ A $ respectively.
Then the polyhedron vertices of this tetrahedron are located at ( $ x,0,0 $ ), ( $ - d, \pm \dfrac{a}{2},0 $ ), and ( $ 0,0,h $ ), where,
\[ \Rightarrow x = \dfrac{{\dfrac{a}{2}}}{{\cos (\dfrac{\pi }{6})}}\] $ = \dfrac{1}{3}\sqrt {3}a $
Thereafter on simplifying ‘ $ d $ ’ we get,
$ \Rightarrow d = \sqrt {{x^2} - {{(\dfrac{1}{2}a)}^2}} $ $ = \dfrac{1}{6}\sqrt {3}a $
This further gives the area of the base as,
$ \Rightarrow A = \dfrac{1}{2}a(R + x) $ $ = \dfrac{1}{4}\sqrt 3 {a^2} $
Therefore we get the height of the tetrahedron to be,
\[ \Rightarrow h = \sqrt {{a^2} - {x^2}} \] $ = \dfrac{1}{3}\sqrt 6 a $
Further, the circumference of the tetrahedron is calculated from,
$ {x^2} + {(h - R)^2} = {R^2} $
$ {x^2} + {h^2} - 2hR + {R^2} = {R^2} $
Now on substituting the values already calculated in the above given equation we get,
$ \Rightarrow R = \dfrac{{{x^2} + {h^2}}}{{2h}} $
$ \Rightarrow \dfrac{1}{4}\sqrt 6 a $
Finally, we calculate the inradius $ r $ from,
$ r = h - R $
$ \Rightarrow \dfrac{1}{{12}}\sqrt 6 a $ $ = \dfrac{a}{{2\sqrt 6 }} $
So, the correct answer is “Option D”.
Note: Tetrahedron is the simplest of the entire ordinary convex polygon and the only one which has fewer than five faces (four faces). The tetrahedron has 7 axes of symmetry: $ ^4{C_3} $ (axes connecting vertices with the centers of the opposite faces) and $ ^3{C_2} $ (the axes connecting the midpoints of opposite sides).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

Draw an outline map of India and mark the following class 9 social science CBSE

Differentiate between the Western and the Eastern class 9 social science CBSE

What is pollution? How many types of pollution? Define it
