Answer
Verified
396.9k+ views
Hint: In the given question, we are provided a definite integral to solve. The given problem revolves around the concepts and properties of definite integration. The given question requires us to integrate a function of x with respect to x. Indefinite integration gives us a family of curves. Definite integral gives a numeric value.
Complete step-by-step answer:
The given question requires us to evaluate a definite integral $ \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} $ in variable x consisting of rational trigonometric expression.
So, the function to be integrated is $ \dfrac{{x\sin x}}{{1 + {{\cos }^2}x}} $ , the upper limit of integration is $ \pi $ and the lower limit is $ 0 $ .
Now, we know the property of definite integral according to which \[\int_a^b {f\left( x \right)} = \int_a^b {f\left( {a + b - x} \right)} \]. So, we will use this property so as to evaluate the definite integral.
So, we have, $ I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} - - - - \left( 1 \right) $
Using the property of definite integral \[\int_a^b {f\left( x \right)} = \int_a^b {f\left( {a + b - x} \right)} \], we get,
\[ \Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin \left( {\pi - x} \right)}}{{1 + {{\cos }^2}\left( {\pi - x} \right)}}dx} \]
Now, we know that $ \sin \left( {\pi - x} \right) = \sin x $ and $ \cos \left( {\pi - x} \right) = - \cos x $ .
Simplifying the expression further, we get,
\[ \Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\left( { - \cos x} \right)}^2}}}dx} \]
\[ \Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx} - - - - \left( 2 \right)\]
Now, adding the equations marked as $ \left( 1 \right) $ and $ \left( 2 \right) $ , we get,
$ \Rightarrow I + I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} + \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx} $
Opening the bracket and simplifying the expression, we get,
$ \Rightarrow 2I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} + \int_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx - \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} } $
Cancelling the like terms with opposite signs, we get,
$ \Rightarrow 2I = \int_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx} $
Now, we get the value of integral as,
$ \Rightarrow I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} $
We can solve the integral using the method of substitution.
We substitute the value of $ \cos x $ as t.
So, we have, $ t = \cos x $
So, we will change the limits of integration according to the new variable.
Then, we know that as x approaches zero, the value of t tends to $ 1 $ . Similarly, as x approaches $ \pi $ , the value of t tends to $ - 1 $ .
Differentiating both sides of $ t = \cos x $ , we get,
$ \Rightarrow dt = - \sin xdx $
Now, substituting the value of $ \cos x $ as t and the value of $ \sin xdx $ as $ - dt $ in the integral, we get,
\[ \Rightarrow I = \dfrac{\pi }{2}\int_1^{ - 1} {\dfrac{{ - dt}}{{1 + {t^2}}}} \]
Now, we know that the integration of $ \dfrac{1}{{1 + {x^2}}} $ with respect to x is $ {\tan ^{ - 1}}x $ . So, putting in the upper and lower limit in the integral, we get,
\[ \Rightarrow I = \dfrac{{ - \pi }}{2}\left[ {{{\tan }^{ - 1}}\left( { - 1} \right) - {{\tan }^{ - 1}}\left( 1 \right)} \right]\]
Now, we know that the value of $ {\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4} $ and $ {\tan ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{4} $ . So, we get,
\[ \Rightarrow I = \dfrac{{ - \pi }}{2}\left[ { - \dfrac{\pi }{4} - \dfrac{\pi }{4}} \right]\]
Simplifying further, we get,
\[ \Rightarrow I = \dfrac{{ - \pi }}{2}\left[ { - \dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
So, we get the value of the integral $ \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} $ as $ \left( {\dfrac{{{\pi ^2}}}{4}} \right) $ .
Hence, option (C) is correct.
So, the correct answer is “Option C”.
Note: One must have a strong grip over integral calculus to solve such a complex question of definite integration. We also should know about the properties of integration so as to attempt this question. One must take care while doing the calculations in order to be sure of the final answer.
Complete step-by-step answer:
The given question requires us to evaluate a definite integral $ \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} $ in variable x consisting of rational trigonometric expression.
So, the function to be integrated is $ \dfrac{{x\sin x}}{{1 + {{\cos }^2}x}} $ , the upper limit of integration is $ \pi $ and the lower limit is $ 0 $ .
Now, we know the property of definite integral according to which \[\int_a^b {f\left( x \right)} = \int_a^b {f\left( {a + b - x} \right)} \]. So, we will use this property so as to evaluate the definite integral.
So, we have, $ I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} - - - - \left( 1 \right) $
Using the property of definite integral \[\int_a^b {f\left( x \right)} = \int_a^b {f\left( {a + b - x} \right)} \], we get,
\[ \Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin \left( {\pi - x} \right)}}{{1 + {{\cos }^2}\left( {\pi - x} \right)}}dx} \]
Now, we know that $ \sin \left( {\pi - x} \right) = \sin x $ and $ \cos \left( {\pi - x} \right) = - \cos x $ .
Simplifying the expression further, we get,
\[ \Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\left( { - \cos x} \right)}^2}}}dx} \]
\[ \Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx} - - - - \left( 2 \right)\]
Now, adding the equations marked as $ \left( 1 \right) $ and $ \left( 2 \right) $ , we get,
$ \Rightarrow I + I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} + \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx} $
Opening the bracket and simplifying the expression, we get,
$ \Rightarrow 2I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} + \int_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx - \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} } $
Cancelling the like terms with opposite signs, we get,
$ \Rightarrow 2I = \int_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx} $
Now, we get the value of integral as,
$ \Rightarrow I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx} $
We can solve the integral using the method of substitution.
We substitute the value of $ \cos x $ as t.
So, we have, $ t = \cos x $
So, we will change the limits of integration according to the new variable.
Then, we know that as x approaches zero, the value of t tends to $ 1 $ . Similarly, as x approaches $ \pi $ , the value of t tends to $ - 1 $ .
Differentiating both sides of $ t = \cos x $ , we get,
$ \Rightarrow dt = - \sin xdx $
Now, substituting the value of $ \cos x $ as t and the value of $ \sin xdx $ as $ - dt $ in the integral, we get,
\[ \Rightarrow I = \dfrac{\pi }{2}\int_1^{ - 1} {\dfrac{{ - dt}}{{1 + {t^2}}}} \]
Now, we know that the integration of $ \dfrac{1}{{1 + {x^2}}} $ with respect to x is $ {\tan ^{ - 1}}x $ . So, putting in the upper and lower limit in the integral, we get,
\[ \Rightarrow I = \dfrac{{ - \pi }}{2}\left[ {{{\tan }^{ - 1}}\left( { - 1} \right) - {{\tan }^{ - 1}}\left( 1 \right)} \right]\]
Now, we know that the value of $ {\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4} $ and $ {\tan ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{4} $ . So, we get,
\[ \Rightarrow I = \dfrac{{ - \pi }}{2}\left[ { - \dfrac{\pi }{4} - \dfrac{\pi }{4}} \right]\]
Simplifying further, we get,
\[ \Rightarrow I = \dfrac{{ - \pi }}{2}\left[ { - \dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
So, we get the value of the integral $ \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} $ as $ \left( {\dfrac{{{\pi ^2}}}{4}} \right) $ .
Hence, option (C) is correct.
So, the correct answer is “Option C”.
Note: One must have a strong grip over integral calculus to solve such a complex question of definite integration. We also should know about the properties of integration so as to attempt this question. One must take care while doing the calculations in order to be sure of the final answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers