Answer
Verified
460.5k+ views
Hint: Cuboid: In geometry, a cuboid is a three-dimensional shape in which all sides are rectangles. It is a polyhedron, having 6 rectangular sides called faces, 8 vertices and 12 edges. These rectangular faces are at right angles to one another.
Thus, all angles in a cuboid are right angles.
The diagonal (d) of a cuboid is given as: \[d = \sqrt {{{(length)}^2} + {{(width)}^2} + {{\left( {height} \right)}^2}} \]
Complete step-by-step answer:
Given, length of a cuboid =15 cm
Breadth of a cuboid =12 cm
Height of a cuboid =6 cm
As we know that the longest rod that can be kept inside the cuboid will be the diagonal (d) of the cuboid.
\[ \Rightarrow \]\[ d = \sqrt {{{(length)}^2} + {{(width)}^2} + {{\left( {height} \right)}^2}} \]
\[ \Rightarrow d = \sqrt {{{(15)}^2} + {{(12)}^2} + {{\left( 6 \right)}^2}} \]
\[ \Rightarrow d = \sqrt {225 + 144 + 36} \]
\[ \Rightarrow d = \sqrt {405} \]
\[ \Rightarrow d = 9\sqrt 5 cm\]
Required length of the longest rod that can be kept inside the given cuboid will be \[9\sqrt 5 cm\].
Note: Whenever we have given a cuboid, the longest length in the cuboid is its diagonals.
If someone asks to find the length of the longest length in the cuboid find the diagonal of the cuboid using formula\[ = \sqrt {{{(length)}^2} + {{(width)}^2} + {{\left( {height} \right)}^2}} \].
Thus, all angles in a cuboid are right angles.
The diagonal (d) of a cuboid is given as: \[d = \sqrt {{{(length)}^2} + {{(width)}^2} + {{\left( {height} \right)}^2}} \]
Complete step-by-step answer:
Given, length of a cuboid =15 cm
Breadth of a cuboid =12 cm
Height of a cuboid =6 cm
As we know that the longest rod that can be kept inside the cuboid will be the diagonal (d) of the cuboid.
\[ \Rightarrow \]\[ d = \sqrt {{{(length)}^2} + {{(width)}^2} + {{\left( {height} \right)}^2}} \]
\[ \Rightarrow d = \sqrt {{{(15)}^2} + {{(12)}^2} + {{\left( 6 \right)}^2}} \]
\[ \Rightarrow d = \sqrt {225 + 144 + 36} \]
\[ \Rightarrow d = \sqrt {405} \]
\[ \Rightarrow d = 9\sqrt 5 cm\]
Required length of the longest rod that can be kept inside the given cuboid will be \[9\sqrt 5 cm\].
Note: Whenever we have given a cuboid, the longest length in the cuboid is its diagonals.
If someone asks to find the length of the longest length in the cuboid find the diagonal of the cuboid using formula\[ = \sqrt {{{(length)}^2} + {{(width)}^2} + {{\left( {height} \right)}^2}} \].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE