Answer
Verified
441k+ views
Hint: We recall that if $l$ is the length and $b$ is the width of the rectangle then the area is given by $l\times b$. We assume width as $b=x$ feet and use the given data to have $l=3x-10$ feet. We equate the area $l\times b=x\left( 3x-10 \right)$ to given 48 square feet and solve for $x$ .\[\]
Complete step-by-step solution:
We know that a rectangle is a quadrilateral with sides perpendicular to each other. It has two types of sides: the greater side is called length denoted as $l$ and smaller side is called breadth or width denoted as $b$. The length and width together are called dimensions of the rectangle. The area of the rectangle is given by
\[A=l\times b\]
We are given the question that the length of a rectangle is 10 feet less than 3 times its width. Let us assume the width as $b=x$ feet then length will be 3 times width minus 10 that is $l=3\times b-10=3\times x-10=3x-10$ feet.
So the area of the rectangle is ;
\[A=l\times b=x\left( 3x-10 \right)\text{ square feet}\]
We are given this rectangle if the area is 48 square feet which means $A=48$. So we have
\[\begin{align}
& 48=x\left( 3x-10 \right) \\
& \Rightarrow 48=3{{x}^{2}}-10x \\
& \Rightarrow 3{{x}^{2}}-10x-48=0 \\
\end{align}\]
We see that the above equation is a quadratic equation in $x$ which we shall solve by splitting the middle term method. We have
\[\begin{align}
& \Rightarrow 3{{x}^{2}}-18x+8x-48=0 \\
& \Rightarrow 3x\left( x-6 \right)+8\left( x-6 \right)=0 \\
& \Rightarrow \left( x-6 \right)\left( 3x+8 \right)=0 \\
& \Rightarrow x-6=0\text{ or }3x+8=0 \\
& \Rightarrow x=6\text{ or }x=\dfrac{-8}{3} \\
\end{align}\]
We have two roots of the quadratic equation $x=6,\dfrac{-8}{3}$. Since the length of the line segment is always positive we reject the negative root $x=\dfrac{-8}{3}$ and accept $x=6$ as the only root. So the dimensions of the rectangle are
\[\begin{align}
& b=x=6\text{ feet} \\
& l=3x-10=3\left( 6 \right)-10=180=10=8\text{ feet} \\
\end{align}\]
Note: We should remember that area is measured in a unit that is square of unit of length. We can find the splitting terms of a quadratic equation $a{{x}^{2}}+bx+c=0$ by finding two numbers $p,q$ such that $p+q=-b,pq=c\times a$. We can prime factorize $c\times a$ get $p,q$. Here in this problem we prime factorize $48\times 3=2\times 2\times 2\times 2\times 3\times 3$ and select $p=-\left( 2\times 2\times 2 \right)=-8$ and $q=2\times 3\times 3=18$ to so split the term $-18$.
Complete step-by-step solution:
We know that a rectangle is a quadrilateral with sides perpendicular to each other. It has two types of sides: the greater side is called length denoted as $l$ and smaller side is called breadth or width denoted as $b$. The length and width together are called dimensions of the rectangle. The area of the rectangle is given by
\[A=l\times b\]
We are given the question that the length of a rectangle is 10 feet less than 3 times its width. Let us assume the width as $b=x$ feet then length will be 3 times width minus 10 that is $l=3\times b-10=3\times x-10=3x-10$ feet.
So the area of the rectangle is ;
\[A=l\times b=x\left( 3x-10 \right)\text{ square feet}\]
We are given this rectangle if the area is 48 square feet which means $A=48$. So we have
\[\begin{align}
& 48=x\left( 3x-10 \right) \\
& \Rightarrow 48=3{{x}^{2}}-10x \\
& \Rightarrow 3{{x}^{2}}-10x-48=0 \\
\end{align}\]
We see that the above equation is a quadratic equation in $x$ which we shall solve by splitting the middle term method. We have
\[\begin{align}
& \Rightarrow 3{{x}^{2}}-18x+8x-48=0 \\
& \Rightarrow 3x\left( x-6 \right)+8\left( x-6 \right)=0 \\
& \Rightarrow \left( x-6 \right)\left( 3x+8 \right)=0 \\
& \Rightarrow x-6=0\text{ or }3x+8=0 \\
& \Rightarrow x=6\text{ or }x=\dfrac{-8}{3} \\
\end{align}\]
We have two roots of the quadratic equation $x=6,\dfrac{-8}{3}$. Since the length of the line segment is always positive we reject the negative root $x=\dfrac{-8}{3}$ and accept $x=6$ as the only root. So the dimensions of the rectangle are
\[\begin{align}
& b=x=6\text{ feet} \\
& l=3x-10=3\left( 6 \right)-10=180=10=8\text{ feet} \\
\end{align}\]
Note: We should remember that area is measured in a unit that is square of unit of length. We can find the splitting terms of a quadratic equation $a{{x}^{2}}+bx+c=0$ by finding two numbers $p,q$ such that $p+q=-b,pq=c\times a$. We can prime factorize $c\times a$ get $p,q$. Here in this problem we prime factorize $48\times 3=2\times 2\times 2\times 2\times 3\times 3$ and select $p=-\left( 2\times 2\times 2 \right)=-8$ and $q=2\times 3\times 3=18$ to so split the term $-18$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE