
The length of a tangent, subtangent, normal and subnormal for the curve $y={{x}^{2}}+x-1$ at (1,1) are A, B, C, and D respectively, then their increasing order is.
(a) B, D, A, C
(b) B, A, C, D
(c) A, B, C, D
(d) B, A, D, C
Answer
564k+ views
Hint: For solving this question first we will see the formulas for the length of a tangent, subtangent, normal, subnormal. After that, we will differentiate it with respect to $x$ and calculate the value of $\dfrac{dy}{dx}$. Then, we will directly find the length of the subtangent from its formula.
Complete step-by-step solution
Given:
We have to find the increasing order of length of a tangent, subtangent, normal, and subnormal for the curve $y={{x}^{2}}+x-1$ at the point (1,1). And it is given that A is the length of a tangent, B is the length of a subtangent, C is the length of normal and D is the length of subnormal.
Now, before we proceed we should know the following four formulas:
1. Length of tangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
2. Length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
3. Length of normal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
4. Length of subnormal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
Now, first, we will find the value of $\dfrac{dy}{dx}$ at point (1,1) for the function $y={{x}^{2}}+x-1$ . Then,
$\begin{align}
& y={{x}^{2}}+x-1 \\
& \Rightarrow \dfrac{dy}{dx}=2x+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=2+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=3 \\
\end{align}$
Now, using the formulas for the length of tangent, subtangent, normal, subnormal to find the value of A, B, C, D. Then,
\[\begin{align}
& A={{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}={{\left| y\sqrt{1+\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow A=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}} \\
& \Rightarrow A=\dfrac{\sqrt{10}}{3} \\
& B={{\left| y\dfrac{dx}{dy} \right|}_{\left( 1,1 \right)}}={{\left| y\times \dfrac{1}{\dfrac{dy}{dx}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow B=\dfrac{1}{3} \\
& C={{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}=\left| 1\times \sqrt{1+9} \right| \\
& \Rightarrow C=\sqrt{10} \\
& D={{\left| y\dfrac{dy}{dx} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow D=3 \\
\end{align}\]
Now, from the above result, we conclude that $B< A< D< C$ .
Hence, (d) is the correct option.
Note: Here, the student should apply the formula for the length of a tangent, subtangent, normal, and subnormal directly and proceed in a stepwise manner. But we should be careful while writing their formulas as they might seem to be similar. Moreover, we should substitute correct values while calculating to get the correct answer.
Complete step-by-step solution
Given:
We have to find the increasing order of length of a tangent, subtangent, normal, and subnormal for the curve $y={{x}^{2}}+x-1$ at the point (1,1). And it is given that A is the length of a tangent, B is the length of a subtangent, C is the length of normal and D is the length of subnormal.
Now, before we proceed we should know the following four formulas:
1. Length of tangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
2. Length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
3. Length of normal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
4. Length of subnormal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
Now, first, we will find the value of $\dfrac{dy}{dx}$ at point (1,1) for the function $y={{x}^{2}}+x-1$ . Then,
$\begin{align}
& y={{x}^{2}}+x-1 \\
& \Rightarrow \dfrac{dy}{dx}=2x+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=2+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=3 \\
\end{align}$
Now, using the formulas for the length of tangent, subtangent, normal, subnormal to find the value of A, B, C, D. Then,
\[\begin{align}
& A={{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}={{\left| y\sqrt{1+\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow A=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}} \\
& \Rightarrow A=\dfrac{\sqrt{10}}{3} \\
& B={{\left| y\dfrac{dx}{dy} \right|}_{\left( 1,1 \right)}}={{\left| y\times \dfrac{1}{\dfrac{dy}{dx}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow B=\dfrac{1}{3} \\
& C={{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}=\left| 1\times \sqrt{1+9} \right| \\
& \Rightarrow C=\sqrt{10} \\
& D={{\left| y\dfrac{dy}{dx} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow D=3 \\
\end{align}\]
Now, from the above result, we conclude that $B< A< D< C$ .
Hence, (d) is the correct option.
Note: Here, the student should apply the formula for the length of a tangent, subtangent, normal, and subnormal directly and proceed in a stepwise manner. But we should be careful while writing their formulas as they might seem to be similar. Moreover, we should substitute correct values while calculating to get the correct answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

