Answer
Verified
472.2k+ views
Hint:First we have to find the intersection point of chord and parabola . Put the value of $x$ or $y$ from the equation of chord to the equation of parabola and solve the quadratic equation by which we get two point of intersection and calculate the distance between the point
Complete step-by-step answer:
In this case firstly we have to find the point of intersection of chord and parabola ,
It is simple done by the solving the equation of parabola ${y^2} = 4x$ and chord $x + y = 1$
or $x = 1 - y$ , Putting the value of $x$ in equation of parabola ;
i.e. ${y^2} = 4\left( {1 - y} \right)$
by rearranging
${y^2} + 4y - 4$ = $0$
Now we have to solve this quadratic equation
\[a = 1\]
$b = 4$
$c = - 4$
therefore ,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
by putting the values
$y = \dfrac{{ - 4 \pm \sqrt {{{\left( 4 \right)}^2} - 4 \times 1 \times \left( { - 4} \right)} }}{{2 \times 1}}$
After further solving ;
$y = \dfrac{{ - 4 \pm \sqrt {32} }}{2}$
$y = - 2 \pm 2\sqrt 2 $
It means that $y = - 2 + 2\sqrt 2 , - 2 - 2\sqrt 2 $
Now we have to put these $y$ values in equation of chord to get $x$ ;
Equation of chord is $x = 1 - y$ ;
therefore $x = 1 - ( - 2 + 2\sqrt 2 )$ or $x = 1 - ( - 2 - 2\sqrt 2 )$
we get $x = 3 - 2\sqrt 2 ,3 + 2\sqrt 2 $
So the point of intersection is $(3 - 2\sqrt 2 , - 2 + 2\sqrt 2 )$ and $(3 + 2\sqrt 2 , - 2 - 2\sqrt 2 )$
Now we have to calculate distance between them by using distance formula i.e. $\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
= $\sqrt {{{(3 + 2\sqrt 2 - 3 + 2\sqrt 2 )}^2} + {{( - 2 - 2\sqrt 2 + 2 - 2\sqrt 2 )}^2}} $
After solving we get
$ = \sqrt {4 \times 4 \times 2 + 4 \times 4 \times 2} $
$ = \sqrt {64} $
$ = 8 $
So,the length of the chord intercepted by the parabola ${y^2} = 4x$ on the straight line $x + y = 1$ is $8$
So, the correct answer is “Option C”.
Note:You can also simplify this question by putting the value of $y$ in the equation of parabola and get the $x$.If we get only one point of intersection then the chord is tangent of the parabola .
Complete step-by-step answer:
In this case firstly we have to find the point of intersection of chord and parabola ,
It is simple done by the solving the equation of parabola ${y^2} = 4x$ and chord $x + y = 1$
or $x = 1 - y$ , Putting the value of $x$ in equation of parabola ;
i.e. ${y^2} = 4\left( {1 - y} \right)$
by rearranging
${y^2} + 4y - 4$ = $0$
Now we have to solve this quadratic equation
\[a = 1\]
$b = 4$
$c = - 4$
therefore ,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
by putting the values
$y = \dfrac{{ - 4 \pm \sqrt {{{\left( 4 \right)}^2} - 4 \times 1 \times \left( { - 4} \right)} }}{{2 \times 1}}$
After further solving ;
$y = \dfrac{{ - 4 \pm \sqrt {32} }}{2}$
$y = - 2 \pm 2\sqrt 2 $
It means that $y = - 2 + 2\sqrt 2 , - 2 - 2\sqrt 2 $
Now we have to put these $y$ values in equation of chord to get $x$ ;
Equation of chord is $x = 1 - y$ ;
therefore $x = 1 - ( - 2 + 2\sqrt 2 )$ or $x = 1 - ( - 2 - 2\sqrt 2 )$
we get $x = 3 - 2\sqrt 2 ,3 + 2\sqrt 2 $
So the point of intersection is $(3 - 2\sqrt 2 , - 2 + 2\sqrt 2 )$ and $(3 + 2\sqrt 2 , - 2 - 2\sqrt 2 )$
Now we have to calculate distance between them by using distance formula i.e. $\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
= $\sqrt {{{(3 + 2\sqrt 2 - 3 + 2\sqrt 2 )}^2} + {{( - 2 - 2\sqrt 2 + 2 - 2\sqrt 2 )}^2}} $
After solving we get
$ = \sqrt {4 \times 4 \times 2 + 4 \times 4 \times 2} $
$ = \sqrt {64} $
$ = 8 $
So,the length of the chord intercepted by the parabola ${y^2} = 4x$ on the straight line $x + y = 1$ is $8$
So, the correct answer is “Option C”.
Note:You can also simplify this question by putting the value of $y$ in the equation of parabola and get the $x$.If we get only one point of intersection then the chord is tangent of the parabola .
Recently Updated Pages
Let overrightarrow a hat i hat joverrightarrow b hat class 12 maths JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE