
The locus of the vertices of the family of
parabolas\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\]is
(a) \[xy=\dfrac{3}{4}\]
(b) \[xy=\dfrac{35}{16}\]
(c) \[xy=\dfrac{64}{105}\]
(d) \[xy=\dfrac{105}{64}\]
Answer
523.5k+ views
Hint: Vertex of the parabola is the point at which the parabola acquires minimum or maximum value. Differentiate the given equation of parabola and equate it to zero to find the vertex of parabola and then solve it to find the locus of vertices of parabola.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE
