Answer
Verified
449.7k+ views
Hint: We need to compare each of the wave equations given in the question to the standard wave equation. Then the wave speed will be given by the ratio of $\omega $ and $k$, and the maximum transverse string speed will be the product of the amplitude and $\omega $. Comparing the values for each wave we can find which option is correct.
Formula Used: In this solution we will be using the following formula,
$\Rightarrow v = \dfrac{\omega }{k}$
where $v$ is the wave speed, $\omega $ is the angular frequency and $k$ is the wave number.
$\Rightarrow {u_{\max }} = A\omega $
where ${u_{\max }}$ is the maximum transverse string speed, $A$ is the amplitude.
Complete step by step answer
To solve this problem, we need to first compare all the wave equations to the standard wave equation given as
$\Rightarrow y = A\sin \left( {kx - \omega t} \right)$
Now for a wave, the wave speed is given as,
$\Rightarrow v = \dfrac{\omega }{k}$
and the maximum transverse speed is calculated by taking the derivative of the equation with respect to time,
$\Rightarrow {u_{\max }} = {\left. {\dfrac{{dy}}{{dt}}} \right|_{\max }} = {\left. {\dfrac{d}{{dt}}\left[ {A\sin \left( {kx - \omega t} \right)} \right]} \right|_{\max }}$
So we get the value as ${u_{\max }} = A\omega $
Now for the first wave we have $y\left( {x,t} \right) = \left( {2cm} \right)\sin \left( {3x - 6t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 2cm$, $k = 3$ and $\omega = 6$
So we get for the first wave,
$\Rightarrow {v_1} = \dfrac{\omega }{k} = \dfrac{6}{3} = 2cm/s$
and ${u_{\max 1}} = A\omega = 2 \times 6 = 12cm/s$
For the second wave we have $y\left( {x,t} \right) = \left( {3cm} \right)\sin \left( {4x - 12t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 3cm$, $k = 4$ and $\omega = 12$
So we get for the second wave,
$\Rightarrow {v_2} = \dfrac{\omega }{k} = \dfrac{{12}}{4} = 3cm/s$
and ${u_{\max 2}} = A\omega = 3 \times 12 = 36cm/s$
For the third wave we have $y\left( {x,t} \right) = \left( {4cm} \right)\sin \left( {5x - 11t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 4cm$, $k = 5$ and $\omega = 11$
So we get for the third wave,
$\Rightarrow {v_3} = \dfrac{\omega }{k} = \dfrac{{11}}{5} = 2.2cm/s$
and ${u_{\max 3}} = A\omega = 4 \times 11 = 44cm/s$
Hence we can say that wave 2 has the greatest wave speed and wave 3 has the greatest maximum transverse string speed.
Note
The wave speed is the phase velocity of a wave. It is the velocity with which any one frequency component of the wave travels. The phase velocity of the wave can also be written in the terms of the wavelength and time period as $v = \dfrac{\lambda }{T}$.
Formula Used: In this solution we will be using the following formula,
$\Rightarrow v = \dfrac{\omega }{k}$
where $v$ is the wave speed, $\omega $ is the angular frequency and $k$ is the wave number.
$\Rightarrow {u_{\max }} = A\omega $
where ${u_{\max }}$ is the maximum transverse string speed, $A$ is the amplitude.
Complete step by step answer
To solve this problem, we need to first compare all the wave equations to the standard wave equation given as
$\Rightarrow y = A\sin \left( {kx - \omega t} \right)$
Now for a wave, the wave speed is given as,
$\Rightarrow v = \dfrac{\omega }{k}$
and the maximum transverse speed is calculated by taking the derivative of the equation with respect to time,
$\Rightarrow {u_{\max }} = {\left. {\dfrac{{dy}}{{dt}}} \right|_{\max }} = {\left. {\dfrac{d}{{dt}}\left[ {A\sin \left( {kx - \omega t} \right)} \right]} \right|_{\max }}$
So we get the value as ${u_{\max }} = A\omega $
Now for the first wave we have $y\left( {x,t} \right) = \left( {2cm} \right)\sin \left( {3x - 6t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 2cm$, $k = 3$ and $\omega = 6$
So we get for the first wave,
$\Rightarrow {v_1} = \dfrac{\omega }{k} = \dfrac{6}{3} = 2cm/s$
and ${u_{\max 1}} = A\omega = 2 \times 6 = 12cm/s$
For the second wave we have $y\left( {x,t} \right) = \left( {3cm} \right)\sin \left( {4x - 12t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 3cm$, $k = 4$ and $\omega = 12$
So we get for the second wave,
$\Rightarrow {v_2} = \dfrac{\omega }{k} = \dfrac{{12}}{4} = 3cm/s$
and ${u_{\max 2}} = A\omega = 3 \times 12 = 36cm/s$
For the third wave we have $y\left( {x,t} \right) = \left( {4cm} \right)\sin \left( {5x - 11t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 4cm$, $k = 5$ and $\omega = 11$
So we get for the third wave,
$\Rightarrow {v_3} = \dfrac{\omega }{k} = \dfrac{{11}}{5} = 2.2cm/s$
and ${u_{\max 3}} = A\omega = 4 \times 11 = 44cm/s$
Hence we can say that wave 2 has the greatest wave speed and wave 3 has the greatest maximum transverse string speed.
Note
The wave speed is the phase velocity of a wave. It is the velocity with which any one frequency component of the wave travels. The phase velocity of the wave can also be written in the terms of the wavelength and time period as $v = \dfrac{\lambda }{T}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers