The mathematical form for three sinusoidal travelling waves are given by
Wave 1 : $y\left( {x,t} \right) = \left( {2cm} \right)\sin \left( {3x - 6t} \right)$
Wave 2 : $y\left( {x,t} \right) = \left( {3cm} \right)\sin \left( {4x - 12t} \right)$
Wave 3 : $y\left( {x,t} \right) = \left( {4cm} \right)\sin \left( {5x - 11t} \right)$
where $x$ is in meters and $t$ is in seconds of these waves
(A) Wave 1 has the greatest wave speed and the greatest maximum transverse string speed.
(B) Wave 2 has the greatest wave speed and wave 1 has the greatest maximum transverse string speed.
(C) Wave 3 has the greatest wave speed and the greatest maximum transverse string speed.
(D) Wave 2 has the greatest maximum transverse string speed.
Answer
Verified
463.2k+ views
Hint: We need to compare each of the wave equations given in the question to the standard wave equation. Then the wave speed will be given by the ratio of $\omega $ and $k$, and the maximum transverse string speed will be the product of the amplitude and $\omega $. Comparing the values for each wave we can find which option is correct.
Formula Used: In this solution we will be using the following formula,
$\Rightarrow v = \dfrac{\omega }{k}$
where $v$ is the wave speed, $\omega $ is the angular frequency and $k$ is the wave number.
$\Rightarrow {u_{\max }} = A\omega $
where ${u_{\max }}$ is the maximum transverse string speed, $A$ is the amplitude.
Complete step by step answer
To solve this problem, we need to first compare all the wave equations to the standard wave equation given as
$\Rightarrow y = A\sin \left( {kx - \omega t} \right)$
Now for a wave, the wave speed is given as,
$\Rightarrow v = \dfrac{\omega }{k}$
and the maximum transverse speed is calculated by taking the derivative of the equation with respect to time,
$\Rightarrow {u_{\max }} = {\left. {\dfrac{{dy}}{{dt}}} \right|_{\max }} = {\left. {\dfrac{d}{{dt}}\left[ {A\sin \left( {kx - \omega t} \right)} \right]} \right|_{\max }}$
So we get the value as ${u_{\max }} = A\omega $
Now for the first wave we have $y\left( {x,t} \right) = \left( {2cm} \right)\sin \left( {3x - 6t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 2cm$, $k = 3$ and $\omega = 6$
So we get for the first wave,
$\Rightarrow {v_1} = \dfrac{\omega }{k} = \dfrac{6}{3} = 2cm/s$
and ${u_{\max 1}} = A\omega = 2 \times 6 = 12cm/s$
For the second wave we have $y\left( {x,t} \right) = \left( {3cm} \right)\sin \left( {4x - 12t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 3cm$, $k = 4$ and $\omega = 12$
So we get for the second wave,
$\Rightarrow {v_2} = \dfrac{\omega }{k} = \dfrac{{12}}{4} = 3cm/s$
and ${u_{\max 2}} = A\omega = 3 \times 12 = 36cm/s$
For the third wave we have $y\left( {x,t} \right) = \left( {4cm} \right)\sin \left( {5x - 11t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 4cm$, $k = 5$ and $\omega = 11$
So we get for the third wave,
$\Rightarrow {v_3} = \dfrac{\omega }{k} = \dfrac{{11}}{5} = 2.2cm/s$
and ${u_{\max 3}} = A\omega = 4 \times 11 = 44cm/s$
Hence we can say that wave 2 has the greatest wave speed and wave 3 has the greatest maximum transverse string speed.
Note
The wave speed is the phase velocity of a wave. It is the velocity with which any one frequency component of the wave travels. The phase velocity of the wave can also be written in the terms of the wavelength and time period as $v = \dfrac{\lambda }{T}$.
Formula Used: In this solution we will be using the following formula,
$\Rightarrow v = \dfrac{\omega }{k}$
where $v$ is the wave speed, $\omega $ is the angular frequency and $k$ is the wave number.
$\Rightarrow {u_{\max }} = A\omega $
where ${u_{\max }}$ is the maximum transverse string speed, $A$ is the amplitude.
Complete step by step answer
To solve this problem, we need to first compare all the wave equations to the standard wave equation given as
$\Rightarrow y = A\sin \left( {kx - \omega t} \right)$
Now for a wave, the wave speed is given as,
$\Rightarrow v = \dfrac{\omega }{k}$
and the maximum transverse speed is calculated by taking the derivative of the equation with respect to time,
$\Rightarrow {u_{\max }} = {\left. {\dfrac{{dy}}{{dt}}} \right|_{\max }} = {\left. {\dfrac{d}{{dt}}\left[ {A\sin \left( {kx - \omega t} \right)} \right]} \right|_{\max }}$
So we get the value as ${u_{\max }} = A\omega $
Now for the first wave we have $y\left( {x,t} \right) = \left( {2cm} \right)\sin \left( {3x - 6t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 2cm$, $k = 3$ and $\omega = 6$
So we get for the first wave,
$\Rightarrow {v_1} = \dfrac{\omega }{k} = \dfrac{6}{3} = 2cm/s$
and ${u_{\max 1}} = A\omega = 2 \times 6 = 12cm/s$
For the second wave we have $y\left( {x,t} \right) = \left( {3cm} \right)\sin \left( {4x - 12t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 3cm$, $k = 4$ and $\omega = 12$
So we get for the second wave,
$\Rightarrow {v_2} = \dfrac{\omega }{k} = \dfrac{{12}}{4} = 3cm/s$
and ${u_{\max 2}} = A\omega = 3 \times 12 = 36cm/s$
For the third wave we have $y\left( {x,t} \right) = \left( {4cm} \right)\sin \left( {5x - 11t} \right)$
On comparing with $y = A\sin \left( {kx - \omega t} \right)$ we have,
$\Rightarrow A = 4cm$, $k = 5$ and $\omega = 11$
So we get for the third wave,
$\Rightarrow {v_3} = \dfrac{\omega }{k} = \dfrac{{11}}{5} = 2.2cm/s$
and ${u_{\max 3}} = A\omega = 4 \times 11 = 44cm/s$
Hence we can say that wave 2 has the greatest wave speed and wave 3 has the greatest maximum transverse string speed.
Note
The wave speed is the phase velocity of a wave. It is the velocity with which any one frequency component of the wave travels. The phase velocity of the wave can also be written in the terms of the wavelength and time period as $v = \dfrac{\lambda }{T}$.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE