Answer
Verified
497.7k+ views
Hint: A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]
We know,
\[\left| x+a \right|=\left\{ \begin{align}
& x+a,x\ge -a \\
& -(x+a),x\le -a \\
\end{align} \right.\]
So , \[\left| x+1 \right|=\left\{ \begin{align}
& x+1,\text{ }x\ge -1 \\
& -\left( x+1 \right),\text{ }x\le -1 \\
\end{align} \right.\]
and \[\left| x-1 \right|=\left\{ \begin{align}
& x-1,\text{ }x\ge 1 \\
& -\left( x-1 \right),\text{ }x\le 1 \\
\end{align} \right.\]
So, we can rewrite the function as
\[f\left( x \right)=\left\{ \begin{align}
& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\
& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\
& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\
\end{align} \right.\]
Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].
We will check if the function is differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
Now , we will check the differentiability of the function at \[x=-1\].
The right-hand derivative of the function at \[x=-1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]
Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]
Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].
So , the function is not differentiable at \[x=-1\].
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]
Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]
Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].
So , the number of points at which the function is not differentiable is \[2\]
Answer is (a)
Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.
The given function is \[f\left( x \right)=\left| x+1 \right|+\left| x-1 \right|\]
We know,
\[\left| x+a \right|=\left\{ \begin{align}
& x+a,x\ge -a \\
& -(x+a),x\le -a \\
\end{align} \right.\]
So , \[\left| x+1 \right|=\left\{ \begin{align}
& x+1,\text{ }x\ge -1 \\
& -\left( x+1 \right),\text{ }x\le -1 \\
\end{align} \right.\]
and \[\left| x-1 \right|=\left\{ \begin{align}
& x-1,\text{ }x\ge 1 \\
& -\left( x-1 \right),\text{ }x\le 1 \\
\end{align} \right.\]
So, we can rewrite the function as
\[f\left( x \right)=\left\{ \begin{align}
& -(x+1)-\left( x-1 \right),\text{ }x\le -1 \\
& \left( x+1 \right)-\left( x-1 \right),\text{ -1}\le \text{ }x\le 1 \\
& \left( x+1 \right)+\left( x-1 \right),\text{ }x\ge 1 \\
\end{align} \right.\]
Now, we can see there are two critical points i.e. \[x=-1\]and \[x=1\].
We will check if the function is differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\]is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
Now , we will check the differentiability of the function at \[x=-1\].
The right-hand derivative of the function at \[x=-1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1+h \right)-f\left( -1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( -1+h+1 \right)-\left( -1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h-\left( -2+h \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2-h-2}{h}=0\]
Now , the left-hand derivative of \[f\left( x \right)\]at \[x=-1\]is given as
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( -1-h \right)-f\left( -1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\left( -1-h+1 \right)-\left( -1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{h+2+h-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{-h}=-2\]
Clearly , the left-hand derivative of the function at \[x=-1\] is not equal to the right hand derivative of the function at \[x=-1\].
So , the function is not differentiable at \[x=-1\].
Now, we will check the differentiability of \[f\left( x \right)\] at \[x=1\]
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-h+1 \right)-\left( 1-h-1 \right)-2}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h+h-2}{-h}=0\]
Now , the right-hand derivative of \[f\left( x \right)\]at \[x=1\] is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1+h+1 \right)+\left( 1+h-1 \right)-\left( 2 \right)}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2+h+h-2}{h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2h}{h}=2\]
Clearly, \[{{L}^{'}}\ne {{R}^{'}}\], i.e. left-hand derivative of the function at \[x=1\] is not equal to right hand derivative of the function at \[x=1\]. So , the function \[f\left( x \right)\]is not differentiable at \[x=1\].
So , the number of points at which the function is not differentiable is \[2\]
Answer is (a)
Note: A function is said to be differentiable at a point if the left-hand derivative of the function at that point is equal to the right-hand derivative of the function at that point.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE