The number of terms with integral coefficient in the expansion of \[{\left( {{7^{\dfrac{1}{3}}} + {5^{\dfrac{1}{2}}}.x} \right)^{600}}\] is
A). 100
B). 50
C). 101
D). None of these
Answer
Verified
482.1k+ views
Hint: The general term of expansion is given by \[{T_{r + 1}}\], so find the general term of the expansion then see that for what possible terms it can have integral coefficients, you will find an AP in those terms then use the formula for \[{n^{th}}\] to get the final results.
Complete step-by-step answer:
We know that general term of any expansion given by \[{(a + b)^n}\] is \[{}^n{C_r} \times {a^{n - r}} \times {b^r}\]
So the general term \[{T_{r + 1}}\] in the expansion given in the question will be
\[\begin{array}{l}
{}^{600}{C_r}{\left( {{7^{\dfrac{1}{3}}}} \right)^{600 - r}} \times {\left( {{5^{\dfrac{1}{2}}}.x} \right)^r}\\
= {}^{600}{C_r} \times {7^{\left( {600 - r} \right) \times \dfrac{1}{3}}} \times {5^{\dfrac{r}{2}}} \times {x^r}\\
= {}^{600}{C_r} \times {7^{200 - \dfrac{r}{3}}} \times {5^{\dfrac{r}{2}}} \times {x^r}
\end{array}\]
Now \[{T_{r + 1}}\] is an integer if and only if \[\dfrac{r}{2}\& \dfrac{r}{3}\] are integers for all \[0 \le r \le 600\]
Thus we have all the multiples of 6 that will satisfy the condition
\[\therefore r = 0,6,12,......600\]
Since It is an AP
We know that the \[{n^{th}}\] term of an AP is given by \[{a_n} = a + (n - 1)d\]
Where \[{a_n}\] is the \[{n^{th}}\] term a is the first term and d is the common difference
Clearly here
\[\begin{array}{l}
a = 0\\
{a_n} = 600\\
d = 6
\end{array}\]
Which means that
\[\begin{array}{l}
\therefore {a_n} = a + (n - 1)d\\
\Rightarrow 600 = 0 + (n - 1) \times 6\\
\Rightarrow \dfrac{{600}}{6} = n - 1\\
\Rightarrow 100 = n - 1\\
\Rightarrow n = 101
\end{array}\]
Hence there are a total of 101 terms as integral coefficients
Which means that C is the correct option here.
Note: In exponential if we find \[{a^{{x^y}}}\] then it clearly means that \[{a^{x \times y}} = {a^{xy}}\] I have used this property of exponential while solving this question. Also, note that realizing that the possible values of r is in an AP was the key step which leads to the correct answer.
Complete step-by-step answer:
We know that general term of any expansion given by \[{(a + b)^n}\] is \[{}^n{C_r} \times {a^{n - r}} \times {b^r}\]
So the general term \[{T_{r + 1}}\] in the expansion given in the question will be
\[\begin{array}{l}
{}^{600}{C_r}{\left( {{7^{\dfrac{1}{3}}}} \right)^{600 - r}} \times {\left( {{5^{\dfrac{1}{2}}}.x} \right)^r}\\
= {}^{600}{C_r} \times {7^{\left( {600 - r} \right) \times \dfrac{1}{3}}} \times {5^{\dfrac{r}{2}}} \times {x^r}\\
= {}^{600}{C_r} \times {7^{200 - \dfrac{r}{3}}} \times {5^{\dfrac{r}{2}}} \times {x^r}
\end{array}\]
Now \[{T_{r + 1}}\] is an integer if and only if \[\dfrac{r}{2}\& \dfrac{r}{3}\] are integers for all \[0 \le r \le 600\]
Thus we have all the multiples of 6 that will satisfy the condition
\[\therefore r = 0,6,12,......600\]
Since It is an AP
We know that the \[{n^{th}}\] term of an AP is given by \[{a_n} = a + (n - 1)d\]
Where \[{a_n}\] is the \[{n^{th}}\] term a is the first term and d is the common difference
Clearly here
\[\begin{array}{l}
a = 0\\
{a_n} = 600\\
d = 6
\end{array}\]
Which means that
\[\begin{array}{l}
\therefore {a_n} = a + (n - 1)d\\
\Rightarrow 600 = 0 + (n - 1) \times 6\\
\Rightarrow \dfrac{{600}}{6} = n - 1\\
\Rightarrow 100 = n - 1\\
\Rightarrow n = 101
\end{array}\]
Hence there are a total of 101 terms as integral coefficients
Which means that C is the correct option here.
Note: In exponential if we find \[{a^{{x^y}}}\] then it clearly means that \[{a^{x \times y}} = {a^{xy}}\] I have used this property of exponential while solving this question. Also, note that realizing that the possible values of r is in an AP was the key step which leads to the correct answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE