The number of ways of choosing $3$ balls from $2$ yellow, $3$ green and $5$ blue balls such that at least $2$ blue balls are always selected.
Answer
Verified
407.1k+ views
Hint: Whenever we have to choose r different objects from n different objects, then we use the concepts of combination.
Make different cases according to questions and add their results to find the total number of combinations.
Formula used:
For selection of persons, we use combination (i.e., selection of n different objects taken r a ta a time) $^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Complete step by step solution:
Combination of n different objects taken $r$ at a time is given by: $^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
As given in the question we have to choose $3$ balls from $2$ yellow, $3$ green and $5$ blue balls such that at least $2$ blue balls are always selected .
So, we make different cases consisting $3$balls with at least $2$ blue balls are
$2$ blue balls and 1 yellow ball (out of $2$ yellow balls)
$2$ blue balls and $1$ green ball (out of $3$ green balls)
$3$ blue balls.
Case (I):
$2$ blue balls and 1 yellow ball (out of $2$ yellow balls) is $^{5}{{C}_{2}}$ $\times$ $^{2}{{C}_{1}}$(ways to select $2$ blue balls from $5$ is $^{5}{{C}_{2}}$=$\dfrac{5!}{2!\left( 5-2 \right)!}=\dfrac{5!}{2!\left( 3 \right)!}=5 \times 2=10$ ways and $1$ yellow ball from 2 is $^{2}{{C}_{1}}$=$\dfrac{2!}{1!\left( 2-1 \right)!}=2$ ways.) which is $10 \times 2=20$ ways.
Case (II):
$2$ blue balls and $1$ green ball (out of $3$ green balls) is $^{5}{{C}_{2}} \times ^{3}{{C}_{1}}$( ways to select $2$ blue balls is $^{5}{{C}_{2}}$=$\dfrac{5!}{2!\left( 5-2 \right)!}=\dfrac{5!}{2!\left( 3 \right)!}=5 \times 2=10$ways and $1$ green ball is $^{3}{{C}_{1}}$=$\dfrac{3!}{1!\left( 3-1 \right)!}=3$ways.) which is $10 \times 3$=$30$ways.
Case (III):
$3$ blue balls $^{5}{{C}_{3}}$(ways to select $3$ balls from 5 is $^{5}{{C}_{3}}$=$\dfrac{5!}{3!\left( 5-3 \right)!}=\dfrac{5!}{3!\left( 2 \right)!}=10$ ways).
These are the three possibilities, so we add these cases to get our result which is $20+30+10=60$ ways.
Note:
First identify that question is asking about the number of arrangements or combinations than according to the question and try to make possible cases then use the formula to find the case result and lastly add all the results to find the overall result.
Make different cases according to questions and add their results to find the total number of combinations.
Formula used:
For selection of persons, we use combination (i.e., selection of n different objects taken r a ta a time) $^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
Complete step by step solution:
Combination of n different objects taken $r$ at a time is given by: $^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
As given in the question we have to choose $3$ balls from $2$ yellow, $3$ green and $5$ blue balls such that at least $2$ blue balls are always selected .
So, we make different cases consisting $3$balls with at least $2$ blue balls are
$2$ blue balls and 1 yellow ball (out of $2$ yellow balls)
$2$ blue balls and $1$ green ball (out of $3$ green balls)
$3$ blue balls.
Case (I):
$2$ blue balls and 1 yellow ball (out of $2$ yellow balls) is $^{5}{{C}_{2}}$ $\times$ $^{2}{{C}_{1}}$(ways to select $2$ blue balls from $5$ is $^{5}{{C}_{2}}$=$\dfrac{5!}{2!\left( 5-2 \right)!}=\dfrac{5!}{2!\left( 3 \right)!}=5 \times 2=10$ ways and $1$ yellow ball from 2 is $^{2}{{C}_{1}}$=$\dfrac{2!}{1!\left( 2-1 \right)!}=2$ ways.) which is $10 \times 2=20$ ways.
Case (II):
$2$ blue balls and $1$ green ball (out of $3$ green balls) is $^{5}{{C}_{2}} \times ^{3}{{C}_{1}}$( ways to select $2$ blue balls is $^{5}{{C}_{2}}$=$\dfrac{5!}{2!\left( 5-2 \right)!}=\dfrac{5!}{2!\left( 3 \right)!}=5 \times 2=10$ways and $1$ green ball is $^{3}{{C}_{1}}$=$\dfrac{3!}{1!\left( 3-1 \right)!}=3$ways.) which is $10 \times 3$=$30$ways.
Case (III):
$3$ blue balls $^{5}{{C}_{3}}$(ways to select $3$ balls from 5 is $^{5}{{C}_{3}}$=$\dfrac{5!}{3!\left( 5-3 \right)!}=\dfrac{5!}{3!\left( 2 \right)!}=10$ ways).
These are the three possibilities, so we add these cases to get our result which is $20+30+10=60$ ways.
Note:
First identify that question is asking about the number of arrangements or combinations than according to the question and try to make possible cases then use the formula to find the case result and lastly add all the results to find the overall result.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE