Answer
Verified
477.9k+ views
Hint: For solving this question we will simply find the sum and the product of the given roots and substitute their values in the formula ${{x}^{2}}-\left( \text{sum of the roots} \right)x+\left( \text{product of the roots} \right)$ to get the required quadratic polynomial. After that, we will see the plot of the polynomial and verify our answer.
Complete step-by-step solution -
Given:
We have to find the quadratic polynomial having roots 1 and -2.
Now, before we proceed we should know that if $x=\alpha $ and $x=\beta $ are roots of a quadratic polynomial $\left( x-\alpha \right)\left( x-\beta \right)={{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta $ and we can write it as ${{x}^{2}}-\left( \text{sum of the roots} \right)x+\left( \text{product of the roots} \right)$ .
Now, we come back to our question in which we have to find the quadratic polynomial having roots 1 and 2. And from the above discussion, we can say that the required polynomial will be $\left( x-\alpha \right)\left( x-\beta \right)={{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta $ with the value of $\alpha =1$ and $\beta =-2$ . Then,
$\begin{align}
& \left( x-\alpha \right)\left( x-\beta \right)={{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta \\
& \Rightarrow \left( x-1 \right)\left( x+2 \right)={{x}^{2}}-\left( 1-2 \right)x-2 \\
& \Rightarrow \left( x-1 \right)\left( x+2 \right)={{x}^{2}}+x-2 \\
\end{align}$
Now, from the above result, we conclude that the quadratic polynomial having zeros 1 and -2 will be ${{x}^{2}}+x-2$ . For better clarity look at the figure below:
In the above figure, the curve $y={{x}^{2}}+x-2$ intersects the x-axis at two points A (-2,0) and B (1,0) and it is evident that ${{x}^{2}}+x-2$ is the quadratic polynomial having zeros 1 and -2.
Thus, ${{x}^{2}}+x-2$ is the required quadratic polynomial.
Hence, option (c) will be the correct option.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, though the problem is very easy, but we should write the expression of the required polynomial without any mistake and in the end, we should verify our answer with a graph and strengthen our basic concepts.
Complete step-by-step solution -
Given:
We have to find the quadratic polynomial having roots 1 and -2.
Now, before we proceed we should know that if $x=\alpha $ and $x=\beta $ are roots of a quadratic polynomial $\left( x-\alpha \right)\left( x-\beta \right)={{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta $ and we can write it as ${{x}^{2}}-\left( \text{sum of the roots} \right)x+\left( \text{product of the roots} \right)$ .
Now, we come back to our question in which we have to find the quadratic polynomial having roots 1 and 2. And from the above discussion, we can say that the required polynomial will be $\left( x-\alpha \right)\left( x-\beta \right)={{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta $ with the value of $\alpha =1$ and $\beta =-2$ . Then,
$\begin{align}
& \left( x-\alpha \right)\left( x-\beta \right)={{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta \\
& \Rightarrow \left( x-1 \right)\left( x+2 \right)={{x}^{2}}-\left( 1-2 \right)x-2 \\
& \Rightarrow \left( x-1 \right)\left( x+2 \right)={{x}^{2}}+x-2 \\
\end{align}$
Now, from the above result, we conclude that the quadratic polynomial having zeros 1 and -2 will be ${{x}^{2}}+x-2$ . For better clarity look at the figure below:
In the above figure, the curve $y={{x}^{2}}+x-2$ intersects the x-axis at two points A (-2,0) and B (1,0) and it is evident that ${{x}^{2}}+x-2$ is the quadratic polynomial having zeros 1 and -2.
Thus, ${{x}^{2}}+x-2$ is the required quadratic polynomial.
Hence, option (c) will be the correct option.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, though the problem is very easy, but we should write the expression of the required polynomial without any mistake and in the end, we should verify our answer with a graph and strengthen our basic concepts.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE