Answer
Verified
441.6k+ views
Hint: A unit cell is the smallest repeating unit in the crystal lattice, it is the building block of a crystal like the cell which is the building block of the human body. Body centered cubic cell is one of the types of the unit cell.
Complete step by step solution:
To solve this question we have to find the relation between the radius (r) and the edge of the body centered unit cell (a). We know that the total number of atoms present in the body centered cubic cell is = 2.
In body centered unit cells, atoms in the body diagonals are in contact with each other. So the length of the body diagonal is = $R+2R+R=4R$
The body diagonal = $\sqrt{3}a$
So, 4R = $\sqrt{3}a$---1
According to the question
\[\dfrac{a}{2}=\left( R+r \right)\]---2
From equation 1 and 2
\[\dfrac{a}{2}=\dfrac{a\sqrt{3}}{4}+r\]
\[a(\dfrac{2-\sqrt{3}}{4})=r\]
r = 0.067a
Hence the correct answer is option (C)
Note: In the body centered unit cell, atoms are present at the center and at the corner of the cube. And as we know that there is only one center in a cube hence only one atom is completely present there that means that this atom is not shared with any other unit cell and one atom at the corner contributes to eight other corners. So the total number of atoms present in the body centered cubic cell is = 2. i.e.
1 atom at body center $+\text{ (}\dfrac{1}{8})(8)$ at the corner = 2 atoms
Complete step by step solution:
To solve this question we have to find the relation between the radius (r) and the edge of the body centered unit cell (a). We know that the total number of atoms present in the body centered cubic cell is = 2.
In body centered unit cells, atoms in the body diagonals are in contact with each other. So the length of the body diagonal is = $R+2R+R=4R$
The body diagonal = $\sqrt{3}a$
So, 4R = $\sqrt{3}a$---1
According to the question
\[\dfrac{a}{2}=\left( R+r \right)\]---2
From equation 1 and 2
\[\dfrac{a}{2}=\dfrac{a\sqrt{3}}{4}+r\]
\[a(\dfrac{2-\sqrt{3}}{4})=r\]
r = 0.067a
Hence the correct answer is option (C)
Note: In the body centered unit cell, atoms are present at the center and at the corner of the cube. And as we know that there is only one center in a cube hence only one atom is completely present there that means that this atom is not shared with any other unit cell and one atom at the corner contributes to eight other corners. So the total number of atoms present in the body centered cubic cell is = 2. i.e.
1 atom at body center $+\text{ (}\dfrac{1}{8})(8)$ at the corner = 2 atoms
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers