Answer
Verified
452.4k+ views
Hint: Here, we have been asked to give the range of the function defined as $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$. To do this, we will first have to define what kind of function this is so that we get its better understanding. Here, it is a trigonometric function. Then we will give its domain and from all the collective knowledge that we have of the function now, we will provide its range.
Complete step by step answer:
We have been given a function $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ and we need to find its range. For this we first need to know what kind of function this is.
This is a trigonometric function and we know that the domain of all trigonometric functions (not inverse, only the simple trigonometric functions) is all real numbers.
Thus, here also in f(x), all the real numbers can take the value of x.
But we also know that the cosine function is a periodic function, i.e. the values of cosx start repeating after a fixed interval.
Now, we also know that the value of cosx always lies in the interval $\left[ -1,1 \right]$ no matter whatever the value of x be.
Here, we have been given $\cos \left( \dfrac{x}{3} \right)$ and we know that $\dfrac{x}{3}$ can also take any real value. Hence, the range of $\cos \left( \dfrac{x}{3} \right)$ is the same as that of cosx.
Hence, the range of $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ is [-1,1].
So, the correct answer is “Option B”.
Note: Here we have given ranges of some trigonometric functions which might come in handy:
1. sinx: [-1,1]
2. cosx: [-1,1]
3. tanx: $\left( -\infty ,\infty \right)$
4. cotx: $\left( -\infty .\infty \right)$
5. secx: $(-\infty ,-1]\cup [1,\infty )$
6. cosecx: $(-\infty ,-1]\cup [1,\infty )$
Complete step by step answer:
We have been given a function $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ and we need to find its range. For this we first need to know what kind of function this is.
This is a trigonometric function and we know that the domain of all trigonometric functions (not inverse, only the simple trigonometric functions) is all real numbers.
Thus, here also in f(x), all the real numbers can take the value of x.
But we also know that the cosine function is a periodic function, i.e. the values of cosx start repeating after a fixed interval.
Now, we also know that the value of cosx always lies in the interval $\left[ -1,1 \right]$ no matter whatever the value of x be.
Here, we have been given $\cos \left( \dfrac{x}{3} \right)$ and we know that $\dfrac{x}{3}$ can also take any real value. Hence, the range of $\cos \left( \dfrac{x}{3} \right)$ is the same as that of cosx.
Hence, the range of $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ is [-1,1].
So, the correct answer is “Option B”.
Note: Here we have given ranges of some trigonometric functions which might come in handy:
1. sinx: [-1,1]
2. cosx: [-1,1]
3. tanx: $\left( -\infty ,\infty \right)$
4. cotx: $\left( -\infty .\infty \right)$
5. secx: $(-\infty ,-1]\cup [1,\infty )$
6. cosecx: $(-\infty ,-1]\cup [1,\infty )$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE