
The rate constant of third order reaction is:
(A) \[{\text{mol li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{s}}^{ - 1}}\]
(B) \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ }}{{\text{L}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
(C) \[{\text{mo}}{{\text{l}}^{ - 1}}{\text{ lit }}{{\text{s}}^{ - 1}}\]
(D) \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{s}}^{ - 1}}\]
Answer
466.2k+ views
Hint: Use the following formula for the units of the rate constant of nth order reaction.
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}}\]
In the above formula, substitute 3 for the value of n and obtain the units of the rate constant for third order reaction.
Complete step by step answer:
A rate law expression is the relationship between the rate of the reaction, the rate constant of the reaction and the specific reaction rate.
For nth order reaction, the rate law expression is, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^n}\] .
Here, k is the rate constant or specific reaction rate.
For nth order reaction, the rate of the reaction is proportional to the nth order of the reactant concentration.
Thus, for the first order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^1}\].
Thus, for the second order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^2}\].
Thus, for the third order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\].
Obtain the units of the rate constant for third order reaction.
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - 3}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{ - 2}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{s}}^{ - 1}} \]
\[{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
Here, the second is replaced with T for the unit of time.
The unit for the rate constant of third order reaction is \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ }}{{\text{L}}^2}{\text{ }}{{\text{T}}^{ - 1}}\] :
You can also write the unit for the rate constant of third order reaction as \[{{\text{M}}^{ - 2}}{\text{ }}{{\text{T}}^{ - 1}}\] :
Here, M represents the molarity or molar concentration. The unit of molarity is moles per litre.
So, the correct option is the option (B).
Note: You can use the following alternate approach to obtain units of the rate constant for the third order reaction.
\[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\]
Rearrange the above equation. Substitute the units of rate and the reactant concentration
\[k = \dfrac{{{\text{rate}}}}{{{{\left[ {{\text{reactant}}} \right]}^3}}}{\text{ }} \\
k = \dfrac{{{\text{mol li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{T}}^{ - 1}}}}{{{{\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)}^3}}}{\text{ }} \\
k = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}}\]
In the above formula, substitute 3 for the value of n and obtain the units of the rate constant for third order reaction.
Complete step by step answer:
A rate law expression is the relationship between the rate of the reaction, the rate constant of the reaction and the specific reaction rate.
For nth order reaction, the rate law expression is, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^n}\] .
Here, k is the rate constant or specific reaction rate.
For nth order reaction, the rate of the reaction is proportional to the nth order of the reactant concentration.
Thus, for the first order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^1}\].
Thus, for the second order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^2}\].
Thus, for the third order reaction, \[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\].
Obtain the units of the rate constant for third order reaction.
\[{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - n}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{1 - 3}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)^{ - 2}}{\text{ }}{{\text{s}}^{ - 1}} \\
{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{s}}^{ - 1}} \]
\[{\text{Unit}} = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
Here, the second is replaced with T for the unit of time.
The unit for the rate constant of third order reaction is \[{\text{mo}}{{\text{l}}^{ - 2}}{\text{ }}{{\text{L}}^2}{\text{ }}{{\text{T}}^{ - 1}}\] :
You can also write the unit for the rate constant of third order reaction as \[{{\text{M}}^{ - 2}}{\text{ }}{{\text{T}}^{ - 1}}\] :
Here, M represents the molarity or molar concentration. The unit of molarity is moles per litre.
So, the correct option is the option (B).
Note: You can use the following alternate approach to obtain units of the rate constant for the third order reaction.
\[{\text{rate }} = k \times {\left[ {{\text{reactant}}} \right]^3}\]
Rearrange the above equation. Substitute the units of rate and the reactant concentration
\[k = \dfrac{{{\text{rate}}}}{{{{\left[ {{\text{reactant}}} \right]}^3}}}{\text{ }} \\
k = \dfrac{{{\text{mol li}}{{\text{t}}^{ - 1}}{\text{ }}{{\text{T}}^{ - 1}}}}{{{{\left( {{\text{mol li}}{{\text{t}}^{ - 1}}} \right)}^3}}}{\text{ }} \\
k = {\text{mo}}{{\text{l}}^{ - 2}}{\text{ li}}{{\text{t}}^2}{\text{ }}{{\text{T}}^{ - 1}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

The final image formed by a compound microscope is class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE

Sum of two skew symmetric matrices is always matri class 12 maths CBSE
