
The ratio in which the line joining points $\left( {2,4,5} \right)$ and $\left( {3,5, - 4} \right)$ divide ${\text{YZ}}$-plane is
A.$ - 2:3$
B.$2:3$
C.$ - 3:2$
D.$3:2$
Answer
565.5k+ views
Hint: We know that on the ${\text{YZ}}$-plane the $x$-coordinate of the point that divides the plane will be zero. Assume the ratio that divides the given plane and use the section formula of 3D geometry to find the ratio by comparing the coordinates.
Formula used:
Let us consider two points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_1},{y_1},{z_1}} \right)$ on a plane. The coordinates of a point $\left( {x,y,z} \right)$ that divides the line segment joining these two points in the ratio $m:n$ is given by:
$\left( {x,y,z} \right) = \left( {\frac{{m{x_2} + n{x_1}}}{{m + n}},\frac{{m{y_2} + n{y_1}}}{{m + n}},\frac{{m{z_2} + n{z_1}}}{{m + n}}} \right)$
Complete step-by-step answer:
Let us assume that the line segment joining the points $\left( {2,4,5} \right)$ and $\left( {3,5, - 4} \right)$ is divided in the ratio $k:1$ by the ${\text{YZ}}$-plane.
Substitute all the values in the section formula.
$\left( {x,y,z} \right) = \left( {\frac{{3k + 2}}{{k + 1}},\frac{{5k + 4}}{{k + 1}},\frac{{ - 4k + 5}}{{k + 1}}} \right)$
We know that on the ${\text{YZ}}$-plane the $x$-coordinate of the point will be zero. So, the coordinates of the points that divide the plane is $\left( {0,y,z} \right)$.
Substitute $0$ for $x$.
$\left( {0,y,z} \right) = \left( {\frac{{3k + 2}}{{k + 1}},\frac{{5k + 4}}{{k + 1}},\frac{{ - 4k + 5}}{{k + 1}}} \right)$
Now, compare the coordinates to find the value of $k$.
\[ \Rightarrow 0 = \dfrac{{3k + 2}}{{k + 1}}\]
\[ \Rightarrow 0 = 3k + 2\]
\[ \Rightarrow 3k = - 2\]
\[ \Rightarrow k = - \dfrac{2}{3}\]
The required ratio can be calculated as:
$ \Rightarrow - \dfrac{2}{3}:1 = - 2:3$
Therefore, the ratio in which the line joining points $\left( {2,4,5} \right)$ and $\left( {3,5, - 4} \right)$ divide ${\text{YZ}}$-plane is $ - 2:3$.
So, the option (A) is the correct answer.
Note: As the line segment divides the ${\text{YZ}}$-plane this means that the line joining the given points is parallel to $x$-axis. So, its $x$-axis coordinate is $0$.
Make sure that the coordinates of the point that divides the plane is $\left( {0,y,z} \right)$. Do not consider it as $\left( {x,0,0} \right)$ otherwise this may lead to the incorrect answer.
Formula used:
Let us consider two points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_1},{y_1},{z_1}} \right)$ on a plane. The coordinates of a point $\left( {x,y,z} \right)$ that divides the line segment joining these two points in the ratio $m:n$ is given by:
$\left( {x,y,z} \right) = \left( {\frac{{m{x_2} + n{x_1}}}{{m + n}},\frac{{m{y_2} + n{y_1}}}{{m + n}},\frac{{m{z_2} + n{z_1}}}{{m + n}}} \right)$
Complete step-by-step answer:
Let us assume that the line segment joining the points $\left( {2,4,5} \right)$ and $\left( {3,5, - 4} \right)$ is divided in the ratio $k:1$ by the ${\text{YZ}}$-plane.
Substitute all the values in the section formula.
$\left( {x,y,z} \right) = \left( {\frac{{3k + 2}}{{k + 1}},\frac{{5k + 4}}{{k + 1}},\frac{{ - 4k + 5}}{{k + 1}}} \right)$
We know that on the ${\text{YZ}}$-plane the $x$-coordinate of the point will be zero. So, the coordinates of the points that divide the plane is $\left( {0,y,z} \right)$.
Substitute $0$ for $x$.
$\left( {0,y,z} \right) = \left( {\frac{{3k + 2}}{{k + 1}},\frac{{5k + 4}}{{k + 1}},\frac{{ - 4k + 5}}{{k + 1}}} \right)$
Now, compare the coordinates to find the value of $k$.
\[ \Rightarrow 0 = \dfrac{{3k + 2}}{{k + 1}}\]
\[ \Rightarrow 0 = 3k + 2\]
\[ \Rightarrow 3k = - 2\]
\[ \Rightarrow k = - \dfrac{2}{3}\]
The required ratio can be calculated as:
$ \Rightarrow - \dfrac{2}{3}:1 = - 2:3$
Therefore, the ratio in which the line joining points $\left( {2,4,5} \right)$ and $\left( {3,5, - 4} \right)$ divide ${\text{YZ}}$-plane is $ - 2:3$.
So, the option (A) is the correct answer.
Note: As the line segment divides the ${\text{YZ}}$-plane this means that the line joining the given points is parallel to $x$-axis. So, its $x$-axis coordinate is $0$.
Make sure that the coordinates of the point that divides the plane is $\left( {0,y,z} \right)$. Do not consider it as $\left( {x,0,0} \right)$ otherwise this may lead to the incorrect answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

