Answer
Verified
453.3k+ views
Hint: We use the relation between resistance and resistivity to find the resistance of the material. Then we use the ohm's law to find the voltage. Dividing the voltage with the length of wire, voltage drop per meter length of wire can be found.
Formula used:
$\rho = \dfrac{{RA}}{l}$
Ohm's law:$V = iR$
Here,
Resistance is represented by $R$
Resistivity is represented by $\rho $
Length of wire is represented by $l$
Area of cross-section is represented by $A$
Voltage is represented by $V$
Current is represented by $i$
Complete step by step answer:
Resistivity is the electrical resistance of a material of unit area of unit length. Resistivity is a constant value for a given material.
Resistivity is equal to
$\rho = \dfrac{{RA}}{l}$
From which we can find resistance
$R = \dfrac{{\rho l}}{A}$
Given, length of the potentiometer, $l=1m$, $\rho = 5 \times {10^{ - 6}}\Omega m$ and $A = 5 \times {10^{ - 6}}{m^2}$. Putting these values in the formula, we find the resistance.
$R = \dfrac{{5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}}$
Given, $i=0.2A$
From ohm's law
$ V = iR $
$\implies V = \dfrac{{0.2 \times 5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}} $
$\implies V = 0.2V $
To find the voltage drop per meter we simply divide the voltage by the length
$V = \dfrac{{0.2}}{1}V{m^{ - 1}} = 0.2V{m^{ - 1}}$
Hence the voltage drop per meter of wire is $0.2V{m^{ - 1}}$.
So, the correct answer is “Option D”.
Note:
The potential drop for one meter or material is also called the potential gradient. It is the potential difference between two points on the wire that are one meter apart. Hence by dividing voltage by the length of wire we find the potential gradient. The units are volts per meter.
Resistivity depends on the type of material. The resistivity of two wires of the same material is always constant. Resistivity does not depend on the mass or length of the substance; it is a fixed value for different materials (like specific heat capacity) hence it is an intrinsic property. It purely depends on the nature of the element.
Formula used:
$\rho = \dfrac{{RA}}{l}$
Ohm's law:$V = iR$
Here,
Resistance is represented by $R$
Resistivity is represented by $\rho $
Length of wire is represented by $l$
Area of cross-section is represented by $A$
Voltage is represented by $V$
Current is represented by $i$
Complete step by step answer:
Resistivity is the electrical resistance of a material of unit area of unit length. Resistivity is a constant value for a given material.
Resistivity is equal to
$\rho = \dfrac{{RA}}{l}$
From which we can find resistance
$R = \dfrac{{\rho l}}{A}$
Given, length of the potentiometer, $l=1m$, $\rho = 5 \times {10^{ - 6}}\Omega m$ and $A = 5 \times {10^{ - 6}}{m^2}$. Putting these values in the formula, we find the resistance.
$R = \dfrac{{5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}}$
Given, $i=0.2A$
From ohm's law
$ V = iR $
$\implies V = \dfrac{{0.2 \times 5 \times {{10}^{ - 6}} \times 1}}{{5 \times {{10}^{ - 6}}}} $
$\implies V = 0.2V $
To find the voltage drop per meter we simply divide the voltage by the length
$V = \dfrac{{0.2}}{1}V{m^{ - 1}} = 0.2V{m^{ - 1}}$
Hence the voltage drop per meter of wire is $0.2V{m^{ - 1}}$.
So, the correct answer is “Option D”.
Note:
The potential drop for one meter or material is also called the potential gradient. It is the potential difference between two points on the wire that are one meter apart. Hence by dividing voltage by the length of wire we find the potential gradient. The units are volts per meter.
Resistivity depends on the type of material. The resistivity of two wires of the same material is always constant. Resistivity does not depend on the mass or length of the substance; it is a fixed value for different materials (like specific heat capacity) hence it is an intrinsic property. It purely depends on the nature of the element.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE