
The Schrodinger wave equation for hydrogen atom is:
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Where ${a_0}$ is Bohr radius. If the radial node in 2s be at ${r_0}$ , then find r in terms of ${a_0}$
A.$\dfrac{{{a_0}}}{2}$
B.$2{a_0}$
C.$\sqrt {2{a_0}} $
D.$\dfrac{{{a_0}}}{{\sqrt 2 }}$
Answer
483k+ views
Hint: The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero, therefore ${\Psi _{2s}}^2 = 0$ and At node, the radial node is at \[{r_0}\] , So \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]\] = 0, then we can calculate r in terms of ${a_0}$
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

How do you find the distance between two parallel lines class 11 maths CBSE

Why do you think did the narrator call lie Amsterdam class 11 english CBSE
