Answer
Verified
451.5k+ views
Hint: We must know that mobility of charge is the measure of how quickly a charge could move through a metal or semiconductor. It is directly proportional to the drift velocity of the charge through the conductor and inversely proportional to the applied electric field. We will obtain its unit from its formula by giving and equating the basic units of the factors it depends upon.
Formula used:
$\mu =\dfrac{{{v}_{d}}}{E}$
Complete step by step answer:
We know that charge mobility in a conductor is the measure of speed of the electron moving through a conductor or a semiconductor device under the influence of an applied external electric field.
It is directly proportional to the drift velocity of the charge through the conductor and inversely proportional to the applied electric field. So, it is given as,
$\mu =\dfrac{{{v}_{d}}}{E}$
Where, ${{v}_{d}}$ is the drift velocity of the electron through the conductor and E is the electric field applied.
Actually, the SI unit of mobility of charges is given as ${{m}^{2}}{{V}^{-1}}{{s}^{-1}}$. But, this could be further changed into the form of units given in the option. For that, we know,
$\mu =\dfrac{{{v}_{d}}}{E}$
Where, drift velocity has a SI unit m/s.
But, E can be defined as $E=\dfrac{F}{q}$.
Where, F is the coulomb’s force and q is the charge.
We know that unit of force is Newton (N) or it can be written as $kg-m/{{s}^{2}}$. Also, the unit of charge is coulomb (C).
Then,
$\begin{align}
& \mu =\dfrac{{{v}_{d}}}{E}=\dfrac{{{v}_{d}}}{\dfrac{F}{q}} \\
& \Rightarrow \mu =\dfrac{q\times {{v}_{d}}}{E} \\
\end{align}$
Now, substituting the units, we will get,
$\begin{align}
& \mu =\dfrac{q\times {{v}_{d}}}{F}=\dfrac{\left( Coulomb \right)\left( \dfrac{m}{s} \right)}{kg\left( \dfrac{m}{{{s}^{2}}} \right)} \\
& \therefore \mu =\dfrac{Coulomb}{\left( \dfrac{kg}{s} \right)} \\
\end{align}$
So, the unit of mobility of charge is found to be $Coulomb/\left( Kg/s \right)$. Therefore, option B is correct.
Note: In the question, we didn’t find the actual SI unit. The mostly SI unit of mobility of charges is ${{m}^{2}}{{V}^{-1}}{{s}^{-1}}$, where V is volt. We must know that drift velocity of an electron is defined as the net velocity at which an electron drifts. Because the electron movement will be slow in the direction within the applied electric field direction. We can calculate current from the equation,
$I=nAvQ$
Here, v is drift velocity.
Formula used:
$\mu =\dfrac{{{v}_{d}}}{E}$
Complete step by step answer:
We know that charge mobility in a conductor is the measure of speed of the electron moving through a conductor or a semiconductor device under the influence of an applied external electric field.
It is directly proportional to the drift velocity of the charge through the conductor and inversely proportional to the applied electric field. So, it is given as,
$\mu =\dfrac{{{v}_{d}}}{E}$
Where, ${{v}_{d}}$ is the drift velocity of the electron through the conductor and E is the electric field applied.
Actually, the SI unit of mobility of charges is given as ${{m}^{2}}{{V}^{-1}}{{s}^{-1}}$. But, this could be further changed into the form of units given in the option. For that, we know,
$\mu =\dfrac{{{v}_{d}}}{E}$
Where, drift velocity has a SI unit m/s.
But, E can be defined as $E=\dfrac{F}{q}$.
Where, F is the coulomb’s force and q is the charge.
We know that unit of force is Newton (N) or it can be written as $kg-m/{{s}^{2}}$. Also, the unit of charge is coulomb (C).
Then,
$\begin{align}
& \mu =\dfrac{{{v}_{d}}}{E}=\dfrac{{{v}_{d}}}{\dfrac{F}{q}} \\
& \Rightarrow \mu =\dfrac{q\times {{v}_{d}}}{E} \\
\end{align}$
Now, substituting the units, we will get,
$\begin{align}
& \mu =\dfrac{q\times {{v}_{d}}}{F}=\dfrac{\left( Coulomb \right)\left( \dfrac{m}{s} \right)}{kg\left( \dfrac{m}{{{s}^{2}}} \right)} \\
& \therefore \mu =\dfrac{Coulomb}{\left( \dfrac{kg}{s} \right)} \\
\end{align}$
So, the unit of mobility of charge is found to be $Coulomb/\left( Kg/s \right)$. Therefore, option B is correct.
Note: In the question, we didn’t find the actual SI unit. The mostly SI unit of mobility of charges is ${{m}^{2}}{{V}^{-1}}{{s}^{-1}}$, where V is volt. We must know that drift velocity of an electron is defined as the net velocity at which an electron drifts. Because the electron movement will be slow in the direction within the applied electric field direction. We can calculate current from the equation,
$I=nAvQ$
Here, v is drift velocity.
Recently Updated Pages
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
What happens to the gravitational force between two class 11 physics NEET
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE