Answer
Verified
469.2k+ views
Hint: We can make the nonlinear differential equation to linear differential equation by dividing the equation with a suitable power of ${\text{y}}$ and then by giving a suitable substitution. We can solve the linear ordinary differential equation by finding the integrating factor and integrating. Then apply the initial value to get the value of the constant of integration.
Complete step by step solution: We have a nonlinear ordinary differential equation.
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{{\text{2y}}}}$
We can make the equation by following steps. Firstly, we can divide the equation by $\dfrac{{\text{1}}}{{\text{y}}}$,
$\dfrac{{{\text{ydy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Let ${\text{v = }}{{\text{y}}^{\text{2}}}$,then,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ = 2y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$
$ \Rightarrow {\text{y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}$
Making this substitution in , we get,
$\dfrac{{\text{1}}}{{\text{2}}}{ \times }\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{v}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Multiplying the equation throughout with 2, we get,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + vsecx = tanx}}$
Now we have a linear differential equation with ${\text{P}}\left( {\text{x}} \right){\text{ = secx}}$ and ${\text{Q}}\left( {\text{x}} \right){\text{ = tanx}}$. Then the integrating factor is given by,
${\text{IF = }}{{\text{e}}^{\int {{\text{P}}\left( {\text{x}} \right){\text{dx}}} }}{\text{ = }}{{\text{e}}^{\int {{\text{secxdx}}} }}$
We know that, \[\int {{\text{secxdx = ln}}\left| {{\text{tanx + secx}}} \right|} \],
$ \Rightarrow {\text{IF = }}{{\text{e}}^{{\text{ln}}\left| {{\text{tanx + secx}}} \right|}}$
We know that, ${{\text{e}}^{{\text{ln}}\left| {\text{a}} \right|}}{\text{ = a}}$. So, we get,
$ \Rightarrow {\text{IF = tanx + secx}}$
Now we can solve for ${\text{v}}$,
${\text{v = }}\dfrac{{\text{1}}}{{{\text{IF}}}}\int {{\text{IF} \times \text{Q}}\left( {\text{x}} \right){\text{dx}}} {\text{ + C = }}\dfrac{{\text{1}}}{{{\text{tanx + secx}}}}\int {{\text{tanx(tanx + secx)dx}}} {\text{ + C}}$
We can solve the integration part.
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = }}\int {{\text{(ta}}{{\text{n}}^{\text{2}}}{\text{x + tanxsecx)dx}}} $
We know that ${\text{ta}}{{\text{n}}^{\text{2}}}{\text{x = se}}{{\text{c}}^{\text{2}}}{\text{x - 1}}$. So, we get,
$
{\text{ = }}\int {\left( {{\text{se}}{{\text{c}}^{\text{2}}}{\text{x - 1 + tanxsecx}}} \right)} {\text{dx}} \\
{\text{ = }}\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ - }}\int {{\text{1dx}}} {\text{ + }}\int {{\text{tanxsecxdx}}} \\
$
We know the integral of $\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ = tanx}}$, $\int {{\text{1dx}}} {\text{ = x}}$and $\int {{\text{tanxsecxdx}}} {\text{ = secx}}$. So, we get,
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = tanx - x + secx}}$
So, ${\text{v}}$becomes,
${\text{v = }}\dfrac{{{\text{tanx + secx - x}}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Resubstituting ${\text{v = }}{{\text{y}}^{\text{2}}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Applying initial condition, ${\text{y}}\left( {\text{0}} \right){\text{ = 1}}$,
\[
{\text{1 = 1 - }}\dfrac{{\text{0}}}{{{\text{tanx + secx}}}}{\text{ + C}} \\
\Rightarrow {\text{C = 1 - 1 = 0}} \\
\]
Giving, ${\text{C = 0}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}$
Therefore, the correct answer is option D.
Note: A non-linear ordinary differential equation of the form $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + yP}}\left( {\text{x}} \right){\text{ = }}{{\text{y}}^{\text{n}}}{\text{Q}}\left( {\text{x}} \right)$ can be converted into linear form by dividing the equation by ${{\text{y}}^{\text{n}}}$, the give substitution for ${{\text{y}}^{{\text{1 - n}}}}$and divide by ${\text{1 - n}}$.
We can solve the linear differential equation by finding the integrating factor and integrating. As the initial value is given, we must find the value of the constant of integration by applying the initial condition. This type of problem with the initial values given is called initial value problems.
Complete step by step solution: We have a nonlinear ordinary differential equation.
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{{\text{2y}}}}$
We can make the equation by following steps. Firstly, we can divide the equation by $\dfrac{{\text{1}}}{{\text{y}}}$,
$\dfrac{{{\text{ydy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Let ${\text{v = }}{{\text{y}}^{\text{2}}}$,then,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ = 2y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$
$ \Rightarrow {\text{y}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}$
Making this substitution in , we get,
$\dfrac{{\text{1}}}{{\text{2}}}{ \times }\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{v}}}{{\text{2}}}{\text{secx = }}\dfrac{{{\text{tanx}}}}{{\text{2}}}$
Multiplying the equation throughout with 2, we get,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + vsecx = tanx}}$
Now we have a linear differential equation with ${\text{P}}\left( {\text{x}} \right){\text{ = secx}}$ and ${\text{Q}}\left( {\text{x}} \right){\text{ = tanx}}$. Then the integrating factor is given by,
${\text{IF = }}{{\text{e}}^{\int {{\text{P}}\left( {\text{x}} \right){\text{dx}}} }}{\text{ = }}{{\text{e}}^{\int {{\text{secxdx}}} }}$
We know that, \[\int {{\text{secxdx = ln}}\left| {{\text{tanx + secx}}} \right|} \],
$ \Rightarrow {\text{IF = }}{{\text{e}}^{{\text{ln}}\left| {{\text{tanx + secx}}} \right|}}$
We know that, ${{\text{e}}^{{\text{ln}}\left| {\text{a}} \right|}}{\text{ = a}}$. So, we get,
$ \Rightarrow {\text{IF = tanx + secx}}$
Now we can solve for ${\text{v}}$,
${\text{v = }}\dfrac{{\text{1}}}{{{\text{IF}}}}\int {{\text{IF} \times \text{Q}}\left( {\text{x}} \right){\text{dx}}} {\text{ + C = }}\dfrac{{\text{1}}}{{{\text{tanx + secx}}}}\int {{\text{tanx(tanx + secx)dx}}} {\text{ + C}}$
We can solve the integration part.
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = }}\int {{\text{(ta}}{{\text{n}}^{\text{2}}}{\text{x + tanxsecx)dx}}} $
We know that ${\text{ta}}{{\text{n}}^{\text{2}}}{\text{x = se}}{{\text{c}}^{\text{2}}}{\text{x - 1}}$. So, we get,
$
{\text{ = }}\int {\left( {{\text{se}}{{\text{c}}^{\text{2}}}{\text{x - 1 + tanxsecx}}} \right)} {\text{dx}} \\
{\text{ = }}\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ - }}\int {{\text{1dx}}} {\text{ + }}\int {{\text{tanxsecxdx}}} \\
$
We know the integral of $\int {{\text{se}}{{\text{c}}^{\text{2}}}{\text{xdx}}} {\text{ = tanx}}$, $\int {{\text{1dx}}} {\text{ = x}}$and $\int {{\text{tanxsecxdx}}} {\text{ = secx}}$. So, we get,
$\int {{\text{tanx}}\left( {{\text{tanx + secx}}} \right){\text{dx}}} {\text{ = tanx - x + secx}}$
So, ${\text{v}}$becomes,
${\text{v = }}\dfrac{{{\text{tanx + secx - x}}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Resubstituting ${\text{v = }}{{\text{y}}^{\text{2}}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}{\text{ + C}}$
Applying initial condition, ${\text{y}}\left( {\text{0}} \right){\text{ = 1}}$,
\[
{\text{1 = 1 - }}\dfrac{{\text{0}}}{{{\text{tanx + secx}}}}{\text{ + C}} \\
\Rightarrow {\text{C = 1 - 1 = 0}} \\
\]
Giving, ${\text{C = 0}}$, we get,
${{\text{y}}^{\text{2}}}{\text{ = 1 - }}\dfrac{{\text{x}}}{{{\text{tanx + secx}}}}$
Therefore, the correct answer is option D.
Note: A non-linear ordinary differential equation of the form $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + yP}}\left( {\text{x}} \right){\text{ = }}{{\text{y}}^{\text{n}}}{\text{Q}}\left( {\text{x}} \right)$ can be converted into linear form by dividing the equation by ${{\text{y}}^{\text{n}}}$, the give substitution for ${{\text{y}}^{{\text{1 - n}}}}$and divide by ${\text{1 - n}}$.
We can solve the linear differential equation by finding the integrating factor and integrating. As the initial value is given, we must find the value of the constant of integration by applying the initial condition. This type of problem with the initial values given is called initial value problems.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE