Answer
Verified
429k+ views
Hint: These types of problems are pretty straight forward and are very simple to solve. In problems such as these, we first analyse the problem and then try to find out all the possible critical points in the problem. These critical points mean all those points which may not lead to the satisfaction of the inequality. We consider such critical points and then try to eliminate them, so that the answers we get do not affect the value as well as the sign of the given inequality. Since in this problem the inequality given is greater than zero, so we consider only the terms whose power is odd.
Complete step by step solution:
Now, we start off with the solution of the given problem,
We first of all find all the critical points. Analysing closely, we find that the critical points in the given inequality are,
\[-2,-1,\dfrac{1}{2},3\]
Now, we know, that the right to \[3\] is positive infinity and the left to \[-2\] is negative infinity. Now if we draw a wavy curve or we take into consideration of the sign rule, we know that,
Right of \[3\] i.e. from \[3\] to positive infinity the sign of the inequality will be positive,
In between \[\dfrac{1}{2}\] and \[3\] the sign of the inequality will be negative,
In between \[-1\] and \[\dfrac{1}{2}\] the sign of the inequality will be positive,
In between \[-2\] and \[-1\] the sign of the inequality will be negative,
Left of \[-2\] i.e. from \[-2\] to negative infinity the sign of the inequality will be positive.
In the above findings, we only consider those which give a positive value, because the value of the inequality is positive. We also see that, in the positive range the value \[0\] also lies in it, which needs to be ignored, as it will lead to an undefined value.
Now writing the answer, we get
\[x\in \left( -\infty ,-2 \right)\cup{\left[ -1,0 \right)}\cup{\left( 0,\dfrac{1}{2} \right]}\cup{\left( 3,\infty \right)}\]
So, the correct answer is “Option A”.
Note: For these types of problems, we first need to keep in mind of all the rules and regulations to find the critical points. A fair knowledge of why to find critical points is also necessary. After finding the points, we need to check for the inclusive range, using the wavy curve method or the sign rule. Once done, we need to further check for points which may lead the inequality to be undefined.
Complete step by step solution:
Now, we start off with the solution of the given problem,
We first of all find all the critical points. Analysing closely, we find that the critical points in the given inequality are,
\[-2,-1,\dfrac{1}{2},3\]
Now, we know, that the right to \[3\] is positive infinity and the left to \[-2\] is negative infinity. Now if we draw a wavy curve or we take into consideration of the sign rule, we know that,
Right of \[3\] i.e. from \[3\] to positive infinity the sign of the inequality will be positive,
In between \[\dfrac{1}{2}\] and \[3\] the sign of the inequality will be negative,
In between \[-1\] and \[\dfrac{1}{2}\] the sign of the inequality will be positive,
In between \[-2\] and \[-1\] the sign of the inequality will be negative,
Left of \[-2\] i.e. from \[-2\] to negative infinity the sign of the inequality will be positive.
In the above findings, we only consider those which give a positive value, because the value of the inequality is positive. We also see that, in the positive range the value \[0\] also lies in it, which needs to be ignored, as it will lead to an undefined value.
Now writing the answer, we get
\[x\in \left( -\infty ,-2 \right)\cup{\left[ -1,0 \right)}\cup{\left( 0,\dfrac{1}{2} \right]}\cup{\left( 3,\infty \right)}\]
So, the correct answer is “Option A”.
Note: For these types of problems, we first need to keep in mind of all the rules and regulations to find the critical points. A fair knowledge of why to find critical points is also necessary. After finding the points, we need to check for the inclusive range, using the wavy curve method or the sign rule. Once done, we need to further check for points which may lead the inequality to be undefined.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers